Background. Simply stated, carbon reinforced carbon (C/C) may be considered as fibre reinforced pyrocarbon. Pyrocarbon is used e.g. in finger joints and artificial heart valves. Aim of the present study was to evaluate if C/C could broaden the field of orthopaedic applications compared to pyrocarbon. Technically, C/C is used e.g. for brakes of F-1 race cars. Methods. The mechanical strength of the C/C material was characterised by a biaxial flexural bending test according ISO 6474-1. Three C/C shoulder heads articulating against vitamin E stabilised, highly cross-linked UHMWPE (E-XLPE) underwent a shoulder simulator study up to 106 cycles. The Coefficient of Friction (CoF) of C/C disks (Ra: 0.045 μm) against cartilage was analysed by a reciprocal cartilage wear tester. The test was conducted in cell culture medium for 4 h and 12 h using bovine cartilage. All test data is compared to the corresponding test results with Al2O3 ceramic. Conclusions. The strength of C/C is 30 % lower than that of Al2O3 ceramic. Its wear rate measured in the shoulder simulator against E-XLPE is in tendency higher than that of ceramic heads. The CoF against cartilage is double compared to the same test with Al2O3. - C/C seems to have limited a potential as material for orthopaedic application. However, more investigations and optimisation of the C/C type and quality are necessary. Level of evidence. Laboratory test on material samples. Study financed by Mathys Ltd Bettlach