Advertisement for orthosearch.org.uk
Results 1 - 20 of 65
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 21 - 21
2 May 2024
Palit A Kiraci E Seemala V Gupta V Williams M King R
Full Access

Ideally the hip arthroplasty should not be subject to bony or prosthetic impingement, in order to minimise complications and optimise outcomes. Modern 3d planning permits pre-operative simulation of the movements of the planned hip arthroplasty to check for such impingement. For this to be meaningful, however, it is necessary to know the range of movement (ROM) that should be simulated. Arbitrary “normal” values for hip ROM are of limited value in such simulations: it is well known that hip ROM is individualised for each patient. We have therefore developed a method to determine this individualised ROM using CT scans. CT scans were performed on 14 cadaveric hips, and the images were segmented to create 3d virtual models. Using Matlab software, each virtual hip was moved in all potential directions to the point of bony impingement, thus defining an individualised impingement-free 3d ROM envelope. This was then compared with the actual ROM as directly measured from each cadaver using a high-resolution motion capture system. For each hip, the ROM envelope free of bony impingement could be described from the CT and represented as a 3d shape. As expected, the directly measured ROM from the cadaver study for each hip was smaller than the CT-based prediction, owing to the presence of constraining soft tissues. However, for movements associated with hip dislocation (such as flexion with internal rotation), the cadaver measurements matched the CT prediction, to within 10°. It is possible to determine an individual's range of clinically important hip movements from a CT scan. This method could therefore be used to create truly personalised movement simulation as part of pre-operative 3d surgical planning


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 80 - 80
1 Jan 2018
Choi J Blackwell R Ismaily S Mallepally R Harris J Noble P
Full Access

Most patients presenting with loss of hip motion secondary to FAI have a combination of cam and pincer morphology. In this study, we present a composite index for predicting joint ROM based on anatomic parameters derived from both the femur and acetabulaum using a single reformatted CT slice. Computer models of the hip joint were reconstructed from CT scans of 31 patients with mixed-type FAI (Average alpha angle: 73.6±11.1°, average LCE: 38.9±7.2°). The internal rotation of the hip at impingement was measured at 90° flexion using custom software. With the joint in neutral, a single slice perpendicular to the acetabular rim was taken at the 2 o'clock position. A set of 11 femoral and acetabular parameters measured from this slice were correlated with hip ROM using stepwise logistic regression. Three anatomic parameters provided significant discrimination of cases impinging at <15 and >15 degrees IR: femoral anteversion (28%, p=0.026), the arc of anterior femoral head sphericity (10%, p=0.040), and the LCE in the 2 o'clock plane (10%, p=0.048). This led to the following definition of the Impingement Index: 0.16*(fem version) +0.11*(ant arc)−0.17*(LCE) which correctly classified 82% of cases investigated. None of the traditional parameters (e.g. alpha angle) were significantly correlated with ROM. Our study has identified alternative morphologic parameters that could act as strong predictors of FAI in preoperative assessments. Using this information, each patient's individual risk of impingement may be estimated, regardless of the relative contributions of deformities of the femur and the acetabulum


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims. In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Methods. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data. Results. The stem with a rectangular neck has increased internal and external rotation with a quatrefoil cross-section compared to a cone in a cylindrical neck. Modification of the cup orientation and pelvic tilt affected the direction of projection of the cone or quatrefoil shape. The mean increase in internal rotation with a rectangular neck was 3.4° (0° to 7.9°; p < 0.001); for external rotation, it was 2.8° (0.5° to 7.8°; p < 0.001). Conclusion. Our study shows the importance of attention to femoral implant design for the assessment of prosthetic impingement. Any universal mathematical model or computer simulation that ignores each stem’s unique neck geometry will provide inaccurate predictions of prosthetic impingement. Cite this article: Bone Joint Res 2021;10(12):780–789


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims. Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results. The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion. It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 20 - 20
7 Jun 2023
Navacchia A Pagkalos J Davis E
Full Access

We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic model was developed using a 20 degree XLPE liner. Physiological ROM and provocative dislocation manoeuvre analyses were performed. A total of 9 cup positions were analysed (inclination 30–40–50 degrees, anteversion 5-15-25 degrees) and combined with 3 stem positions (anteversion 0-15-30 degrees) and 5 lip orientations (right hip 11 to 7 o'clock). Some lip orientation/component position combinations lead to impingement within the physiological ROM range. Using a lipped liner increases the femoral head travel distance prior to dislocation when impingement occurs in the plane of the lip. In THAs with a cup inclination of 30 and 40 degrees, inferior lip orientations (7–8 o'clock for a right hip) performed best. Superior lip orientation performed best with a cup inclination of 50 degrees. Femoral stem version has a significant effect on the range of movement prior to impingement and hence the preferred lip orientation. The optimal orientation of the lip in lipped liner THA is dependent on the position of both the acetabular and femoral components. In the common component orientation combination of stem anteversion 15, cup inclination 40 and cup anteversion 15, the optimal lip orientation was postero-inferiorly (8 o'clock for a right hip). Preventing impingement during physiological ROM is possible with appropriate lip liner orientation


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 426 - 434
1 Apr 2019
Logishetty K van Arkel RJ Ng KCG Muirhead-Allwood SK Cobb JP Jeffers JRT

Aims. The hip’s capsular ligaments passively restrain extreme range of movement (ROM) by wrapping around the native femoral head/neck. We determined the effect of hip resurfacing arthroplasty (HRA), dual-mobility total hip arthroplasty (DM-THA), conventional THA, and surgical approach on ligament function. Materials and Methods. Eight paired cadaveric hip joints were skeletonized but retained the hip capsule. Capsular ROM restraint during controlled internal rotation (IR) and external rotation (ER) was measured before and after HRA, DM-THA, and conventional THA, with a posterior (right hips) and anterior capsulotomy (left hips). Results. Hip resurfacing provided a near-native ROM with between 5° to 17° increase in IR/ER ROM compared with the native hip for the different positions tested, which was a 9% to 33% increase. DM-THA generated a 9° to 61° (18% to 121%) increase in ROM. Conventional THA generated a 52° to 100° (94% to 199%) increase in ROM. Thus, for conventional THA, the capsule function that exerts a limit on ROM is lost. It is restored to some extent by DM-THA, and almost fully restored by hip resurfacing. In positions of low flexion/extension, the posterior capsulotomy provided more normal function than the anterior, possibly because the capsule was shortened during posterior repair. However, in deep flexion positions, the anterior capsulotomy functioned better. Conclusion. Native head-size and capsular repair preserves capsular function after arthroplasty. The anterior and posterior approach differentially affect postoperative biomechanical function of the capsular ligaments. Cite this article: Bone Joint J 2019;101-B:426–434


Aims. Intravenous dexamethasone has been shown to reduce immediate postoperative pain after total hip arthroplasty (THA), though the effects are short-lived. We aimed to assess whether two equivalent perioperative split doses were more effective than a single preoperative dose. Methods. A total of 165 patients were randomly assigned into three groups: two perioperative saline injections (Group A, placebo), a single preoperative dose of 20 mg dexamethasone and a postoperative saline injection (Group B), and two perioperative doses of 10 mg dexamethasone (Group C). Patients, surgeons, and staff collecting outcome data were blinded to allocation. The primary outcome was postoperative pain level reported on a ten-point Numerical Rating Scale (NRS) at rest and during activity. The use of analgesic and antiemetic rescue, incidence of postoperative nausea and vomiting (PONV), CRP and interleukin-6 (IL-6) levels, range of motion (ROM), length of stay (LOS), patient satisfaction, and the incidence of surgical site infection (SSI) and gastrointestinal bleeding (GIB) in the three months postoperatively, were also compared. Results. The pain scores at rest were significantly lower in Groups B and C than in Group A on postoperative days 1 and 2. The dynamic pain scores and CRP and IL-6 levels were significantly lower for Groups B and C compared to Group A on postoperative days 1, 2, and 3. Patients in Groups B and C had a lower incidence of PONV, reduced use of analgesic and antiemetic rescue, improved ROM, shorter LOS, and reported higher satisfaction than in Group A. Patients in Group C had significantly lower dynamic pain scores and IL-6 and CRP levels on postoperative days 2 and 3, and higher ROM and satisfaction on postoperative day 3 than in Group B. No SSI or GIB occurred in any group. Conclusion. Perioperative dexamethasone provides short-term advantages in reducing pain, PONV, and inflammation, and increasing range of motion in the early postoperative period after THA. A split-dose regimen was superior to a single high dose in reducing pain and inflammation, and increasing ROM, with better patient satisfaction. Level of evidence: I. Cite this article: Bone Joint J 2020;102-B(11):1497–1504


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 9 - 9
1 Apr 2022
Williams S Pryce G Board T Isaac G Williams S
Full Access

The 10 year survivorship of THR is generally over 95%. However, the incidence of revision is usually higher in year one. The most common reason being dislocation which at least in part is driven by inadequate range of motion (ROM) leading to impingement, subluxation and ultimately dislocation which is more frequently posterior. ROM is affected by patient activity, bone and component geometry, and component placement. To reduce the incidence of dislocation, supported by registry data, there has been an increase in the use of so-called ‘lipped’ liners. Whilst this increases joint stability, the theoretical ROM is reduced. The aim of this study was to investigate the effect of lip placement on impingement. A rigid body geometric model was incorporated into a CT scan hemi-pelvis and femur, with a clinically available THR virtually implanted. Kinematic activity data associated with dislocation was applied, comprising of five posterior and two anterior dislocation risk activities, resulting from anterior and posterior impingement respectively. Cup inclination and anteversion was varied (30°-70°, 0°-50° respectively) to simulate extremes of clinical outcomes. The apex position of a ‘lipped’ liner was rotated from the superior position, anteriorly and posteriorly in steps of 45°. Incidence and location of implant and bone impingement was recorded in 5346 cases generated. A liner with the lip placed superior increased the occurrence of implant-implant impingement compared with a neutral liner. Rotation of the lip from superior reduced this incidence. This effect was more marked with posterior rotation which after 90° reduced anterior impingement to levels similar to a neutral liner. Complete inversion of the lipped liner reduced impingement, but this and anterior rotation both negate its function – additional stability. This study comprises one bone geometry and component design and one set of activity profiles. Nevertheless, it indicates that appropriate lip placement can minimise the likelihood of impingement for a range of daily activities whilst still providing additional joint stability


Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims. In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading. Methods. Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule. Results. The medial and lateral arms of the iliofemoral ligament generated the highest inbound force vector in positions combining extension and adduction providing anterior stability. The ischiofemoral ligament generated the highest inbound force in flexion with adduction and internal rotation (FADIR), reducing the risk of posterior dislocation. In this position the hip joint reaction force moved 0.8° inbound per Nm of internal capsular restraint, preventing edge loading. Conclusion. The capsular ligaments contribute to keep the joint force vector inbound from the edge of the acetabulum at extreme ROM. Preservation and appropriate tensioning of these structures following any type of hip surgery may be crucial to minimizing complications related to joint instability. Cite this article: Bone Joint Res 2021;10(9):594–601


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 28 - 28
23 Jun 2023
Massè A Giachino M Audisio A Donis A Secco D Turchetto L Limone B Via RG Aprato A
Full Access

Ganz's studies made it possible to address joint deformities on both femoral and acetabular side brought by the Legg-Calvè-Perthes disease (LCPD). Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency along with periacetabular osteotomy (PAO). The purpose of this study is to show the clinical and morphologic outcomes of the technique, and an implemented planning approach. From 2015 to 2023, 13 FHROs were performed on 11 patients for LCPD, in two centers. 11 of 13 hips had an associated PAO. A specific CT and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiographic parameters (sphericity index, extrusion index, integrity of the Shenton's line, LCE angle, Tonnis angle, CCD angle) and clinical parameters (ROM, VAS, Merle d'Aubigné-Postel score, modified-HHS, EQ5D-5L). Early and late complications were reported. The mean follow-up was 40 months. The mean age at surgery was 11,4 years. No major complications were recorded. One patient required a total hip arthroplasty. Femoral Head Sphericity increased from 45% to 70% (p < 0,001); LCE angle from 18° to 42,8° (p < 0,001); extrusion Index from 36,6 to 8 (p < 0,001); Tonnis Angle from 14,4° to 6,2° (p = 0.1); CCD Angle from 131,7 to 136,5° (p < 0,023). The VAS score improved from 3,25 to 0,75,(p = 0.06); Merle d'Aubigné-Postel score from 14.75 to 16 (p = 0,1); Modified-HHS from 65,6 to 89,05 (p = 0,02). The EQ 5D 5L showed significant improvements. ROM increased especially in abduction and extra-rotation. FHRO associated with periacetabular procedures is a safe technique that showed improved functional, clinical and morphologic outcomes in LCPD. The newly introduced simulation and planning algorithm may help to further refine the technique


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 11 - 11
1 Aug 2018
Muirhead-Allwood S Logishetty K van Arkel R Ng G Cobb J Jeffers J
Full Access

The hip joint capsular ligaments (CL) passively restrain extreme range of motion (ROM) by wrapping around the native femoral head, and protect against impingement, edge loading wear and dislocation. This study compared how ligament function was affected by device (hip resurfacing arthroplasty, HRA; dual mobility total hip arthroplasty, DM-THA; and conventional THA, C-THA), with and without CL repair. It was hypothesized that ligament function would only be preserved when native anatomy was preserved: with restoration of head-size (HRA or DM-THA) and repair. Eight normal male cadaveric hips were skeletonised, retaining the hip capsule. CL function was quantified by measuring ROM by internally (IR) and externally rotating (ER) the hip in six functional positions, ranging from full extension with abduction to full flexion with adduction (squatting). Native ROM was compared to ROM after posterior capsulotomy and HRA, and C-THA and DM-THA, before and after surgical CL repair. ROM increased most following C-THA (max 62°), then DM-THA (max 40°), then HRA (max 19°), indicating later engagement of the capsule and reduced biomechanical function with smaller head-size. Dislocations also occurred in squatting after C-THA and DM-THA. CL-repair following HRA restored ROM to the native hip (max 8°). CL-repair following DM-THA reduced ROM hypermobility in flexed positions only and prevented dislocation (max 36°). CL-repair following C-THA did not reduce ROM or prevent dislocation. When HRA was combined with repair, native anatomy was preserved and ligament function was restored. For DM-THA with repair, ligament function depended on the movement of the mobile bearing resulting in near-native function in some positions, but increased ROM when ligaments were unable to wrap around the head/neck. Following C-THA, the reduced head-size resulted in inferior capsular mechanics in all positions as the ligaments remained slack, irrespective of repair. Choosing devices with anatomic head-sizes (resurfacing or dual-mobility) and repairing the capsular ligaments may protect against instability in the early postoperative period


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 129 - 134
1 Jul 2021
Ayekoloye CI Abu Qa'oud M Radi M Leon SA Kuzyk P Safir O Gross AE

Aims. Improvements in functional results and long-term survival are variable following conversion of hip fusion to total hip arthroplasty (THA) and complications are high. The aim of the study was to analyze the clinical and functional results in patients who underwent conversion of hip fusion to THA using a consistent technique and uncemented implants. Methods. A total of 39 hip fusion conversions to THA were undertaken in 38 patients by a single surgeon employing a consistent surgical technique and uncemented implants. Parameters assessed included Harris Hip Score (HHS) for function, range of motion (ROM), leg length discrepancy (LLD), satisfaction, and use of walking aid. Radiographs were reviewed for loosening, subsidence, and heterotopic ossification (HO). Postoperative complications and implant survival were assessed. Results. At mean 12.2 years (2 to 24) follow-up, HHS improved from mean 34.2 (20.8 to 60.5) to 75 (53.6 to 94.0; p < 0.001). Mean postoperative ROM was flexion 77° (50° to 95°), abduction 30° (10° to 40°), adduction 20° (5° to 25°), internal rotation 18° (2° to 30°), and external rotation 17° (5° to 30°). LLD improved from mean -3.36 cm (0 to 8) to postoperative mean -1.14 cm (0 to 4; p < 0.001). Postoperatively, 26 patients (68.4%) required the use of a walking aid. Complications included one (2.5%) dislocation, two (5.1%) partial sciatic nerve injuries, one (2.5%) deep periprosthetic joint infection, two instances of (5.1%) acetabular component aseptic loosening, two (5.1%) periprosthetic fractures, and ten instances of HO (40%), of which three (7.7%) were functionally limiting and required excision. Kaplan-Meier Survival was 97.1% (95% confidence interval (CI) 91.4% to 100%) at ten years and 88.2% (95% CI 70.96 to 100) at 15 years with implant revision for aseptic loosening as endpoint and 81.7% (95% CI 70.9% to 98.0%) at ten years and 74.2% (95% CI 55.6 to 92.8) at 15 years follow-up with implant revision for all cause failure as endpoint. Conclusion. The use of an optimal and consistent surgical technique and cementless implants can result in significant functional improvement, low complication rates, long-term implant survival, and high patient satisfaction following conversion of hip fusion to THA. The possibility of requiring a walking aid should be discussed with the patient before surgery. Cite this article: Bone Joint J 2021;103-B(7 Supple B):129–134


The Bone & Joint Journal
Vol. 97-B, Issue 7 | Pages 890 - 898
1 Jul 2015
Renkawitz T Weber M Springorum H Sendtner E Woerner M Ulm K Weber T Grifka J

We report the kinematic and early clinical results of a patient- and observer-blinded randomised controlled trial in which CT scans were used to compare potential impingement-free range of movement (ROM) and acetabular component cover between patients treated with either the navigated ‘femur-first’ total hip arthroplasty (THA) method (n = 66; male/female 29/37, mean age 62.5 years; 50 to 74) or conventional THA (n = 69; male/female 35/34, mean age 62.9 years; 50 to 75). The Hip Osteoarthritis Outcome Score, the Harris hip score, the Euro-Qol-5D and the Mancuso THA patient expectations score were assessed at six weeks, six months and one year after surgery. A total of 48 of the patients (84%) in the navigated ‘femur-first’ group and 43 (65%) in the conventional group reached all the desirable potential ROM boundaries without prosthetic impingement for activities of daily living (ADL) in flexion, extension, abduction, adduction and rotation (p = 0.016). Acetabular component cover and surface contact with the host bone were > 87% in both groups. There was a significant difference between the navigated and the conventional groups’ Harris hip scores six weeks after surgery (p = 0.010). There were no significant differences with respect to any clinical outcome at six months and one year of follow-up. The navigated ‘femur-first’ technique improves the potential ROM for ADL without prosthetic impingement, although there was no observed clinical difference between the two treatment groups. Cite this article: Bone Joint J 2015; 97-B:890–8


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 12 - 12
1 Oct 2020
Lamontagne M Catelli DS Cotter B Mazuchi FAS Grammatopoulos G
Full Access

Introduction. Spinopelvic mobility has been associated with THA outcome. To-date spine assessments have been made quasi-statically, using radiographs, in standing and seated positions but dynamic spinopelvic mobility has not been well explored. This study aims to determine the association between dynamic (motion analysis) and quasi-static (radiographic) sagittal assessments and examine the association between axial and sagittal spinal kinematics in hip OA patients and controls. Methods. This is a prospective, IRB approved, cohort study of 12 patients with hip OA pre-THA (6F/6M, 67±10 years) and six healthy controls (3F/3M, 46±18 years). All underwent lateral spinopelvic radiographs in standing and seated bend-and-reach (SBR) positions. Pelvic tilt (PT), pelvic-femoral-angle (PFA) and lumbar lordosis (LL) angles were measured in both positions and the differences (Δ) in angles between SBR and standing were computed. All participants performed two dynamic tasks at the motion laboratory: seated maximal trunk rotation (STR) and seated bend and reach (SBR). Three-dimensional joint motion data were collected and processed by a 10-camera infrared motion analysis system (Vicon, Nexus 2.10, UK). Total axial and sagittal spine (mid-thoracic to lumbar) range of motion (ROM) were calculated for STR and SBR, respectively. Results. ΔLL for SBR and motion analysis spinal flexion for SBR moderately correlated (ρ=0.4, p=0.007). Dynamic spinal rotation and flexion significantly, strongly, correlated (ρ=0.6 p=0.007). OA patients compared to healthy participants showed significant less ΔPFA (53°±21° vs. 77°±14°; p<0.001); ΔPT (−17°±8° vs. 9°±15°; p<0.001), ΔLL (35°±15° vs. 43° ±9°; p<0.001), axial spinal rotation during STR (62° ±12°vs. 79° ±8°, p<.001) and less, but not significant, spine flexion during SBR (36° ±15° vs. 44° ±10°, P=.1). Conclusion. Dynamic sagittal and axial spinal ROM showed moderately correlated. Motion analysis can provide valid assessments for spine mobility. OA patients compared to healthy participants showed significant less ΔPFA, ΔPT, ΔLL, axial spinal rotation during STR. Surgeons should be aware that patients with less spine mobility that could affect the stability of THA and increase the risk of poor outcomes


Bone & Joint Open
Vol. 5, Issue 4 | Pages 304 - 311
15 Apr 2024
Galloway R Monnington K Moss R Donaldson J Skinner J McCulloch R

Aims

Young adults undergoing total hip arthroplasty (THA) largely have different indications for surgery, preoperative function, and postoperative goals compared to a standard patient group. The aim of our study was to describe young adult THA preoperative function and quality of life, and to assess postoperative satisfaction and compare this with functional outcome measures.

Methods

A retrospective cohort analysis of young adults (aged < 50 years) undergoing THA between May 2018 and May 2023 in a single tertiary centre was undertaken. Median follow-up was 31 months (12 to 61). Oxford Hip Score (OHS) and focus group-designed questionnaires were distributed. Searches identified 244 cases in 225 patients. Those aged aged under 30 years represented 22.7% of the cohort. Developmental dysplasia of the hip (50; 45.5%) and Perthes’ disease (15; 13.6%) were the commonest indications for THA.