Advertisement for orthosearch.org.uk
Results 1 - 20 of 79
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 19 - 19
17 Nov 2023
Lee K van Duren B Berber R Matar H Bloch B
Full Access

Abstract. Objectives. Stiffness is reported in 4%–16% of patients after having undergone total knee replacement (TKR). Limitation to range of motion (ROM) can limit a patient's ability to undertake activities of daily living with a knee flexion of 83. o. , 93. o. , and 106. o. required to walk up stairs, sit on a chair, and tie one's shoelaces respectively. The treatment of stiffness after TKR remains a challenge. Many treatment options are described for treating the stiff TKR. In addition to physiotherapy the most employed of these is manipulation under anaesthesia (MUA). MUA accounts for up to 36% of readmissions following TKR. Though frequently undertaken the outcomes of MUA remain variable and unpredictable. CPM as an adjuvant therapy to MUA remains the subject of debate. Combining the use of CPM after MUA in theory adds the potential benefits of CPM to those of MUA potentially offering greater improvements in ROM. This paper reports a retrospective study comparing patients who underwent MUA with and without post-operative CPM. Methods. Standard practice in our institution is for patients undergoing MUA for stiff TKR to receive CPM for between 12–24hours post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period several MUA procedures were undertaken without subsequent inpatient CPM. We retrospectively identified two cohorts of patients treated for stiff TKR: group 1) MUA + post-operative CPM 2) Daycase MUA. All patients had undergone initial physiotherapy to try and improve their ROM prior to proceeding to MUA. In addition to patients’ demographics pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded for each patient. Results. In total 168 patients who had undergone MUA between 2017–2022 were identified with a median Age of 66.5 years and 64% female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. 42 had daycase MUA without CPM and the remaining 126 were admitted for post-operative CPM. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) and 68.5. o. (19.0. o. ) for the daycase and CPM groups respectively. The mean ROM recorded at MUA was 95.5. o. (SD:20.7. o. ) and 108.3. o. (SD:14.1. o. ) [p<0.01] and at final follow-up was 87.4o (SD:21.9o) and 92.1o (SD:18.2o) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92% (SD:17%) and 85% (SD:14%) [p=0.03] for daycase and CPM groups respectively. Conclusion. Overall, there was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. Analysis of the percentage ROM gained at MUA maintained at follow up showed that most patients regressed from ROM achieved at MUA in both groups with those in the CPM only maintaining 85% as opposed to 92% in the daycase patients. It is our observation that post-operative CPM does not improve ROM achieved after MUA as compared to MUA alone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 101 - 101
2 Jan 2024
Firth A Lee K van Duren B Berber R Matar H Bloch B
Full Access

Stiffness is reported in up to 16% of patients after total knee replacement (TKR). 1. Treatment of stiffness after TKR remains a challenge. Manipulation under anaesthesia (MUA) accounts for between 6%-36% of readmissions following TKR. 2,3. The outcomes of MUA remain variable/unpredictable. Post-operative CPM is used as an adjuvant to MUA, potentially offering improved ROM, however, remains the subject of debate. We report a retrospective study comparing MUA with and without post-operative CPM. In our institution patients undergoing MUA to receive CPM post-operatively. Owing to the COVID-19 pandemic hospital admissions were limited. During this period MUA procedures were undertaken without CPM. Two cohorts were included: 1) MUA + post-operative CPM 2) Daycase MUA. Patients’ demographics, pre-manipulation ROM, post-MUA ROM, and ROM at final follow-up were recorded. Between 2017-2022 126 patients underwent MUA and were admitted for CPM and 42 had daycase MUA. The median Age was 66.5 and 64% were female. 57% had extension deficit (>5. o. ), 70% had flexion deficit (< 90. o. ), and 37% had both. The mean Pre-operative ROM was 72.3. o. (SD:18.3. o. ) vs. 68.5. o. (19.0. o. ), ROM at MUA was 95.5. o. (SD:20.7. o. ) vs 108.3. o. (SD:14.1. o. ) [p< 0.01], and at final follow-up 87.4. o. (SD:21.9. o. ) vs. 92.1. o. (SD:18.2. o. ) for daycase and CPM groups respectively. At final follow-up for the daycase and CPM groups respectively 10% vs. 7% improved, 29% vs. 13% maintained, and 57% vs. 79% regressed from the ROM achieved at MUA. The mean percentage of ROM gained at MUA maintained at final follow-up was 92%(SD:17) and 85%(SD:14)[p=0.03] for daycase and CPM groups respectively. There was no significant difference in ROM achieved at final follow-up despite the significantly greater improvement in ROM achieved at MUA for the CPM group. The CPM group lost a greater ROM after MUA (15% vs. 8%). We conclude that post-operative CPM does not improve ROM achieved after MUA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 121 - 121
11 Apr 2023
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

To analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. Case-control cross-sectional study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located in T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and expiration. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12), the global T1–T12 ROM were measured. Respiratory function was assess by forced vital capacity (FVC), expiratory volume (FEV1), FEV1/FVC, inspiratory vital capacity (IVC) and peak expiratory flow (PEF). In healthy subjects, the mean T1–T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05) indicating a sagittal stiffness of thoracic spine. A wide T7–T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1–T12 ROM) (p<0.001). There was a significant correlation between T7-T10 ROM and IVC. Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment participating in the deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 2 - 2
2 Jan 2024
Mariscal G Burgos J Antón-Rodrigálvarez L Hevia E Barrios C
Full Access

In healthy subjects, respiratory maximal volumes are highly dependent on the sagittal range of motion of the T7-T10 segment. In AIS, the abolition of T7-T10 dynamics related to the stiffness induced by the apex region in Lenke IA curves could harm ventilation during maximal breathing. The aim of this study was to analyze the dynamics of the thoracic spine during deep breathing in AIS patients and in healthy matched controls. This is a cross-sectional, case-control study. 20 AIS patients (18 girls, Cobb angle, 54.7±7.9°; Risser 1.35±1.2) and 15 healthy volunteers (11 girls) matched in age (12.5 versus 15.8 yr. mean age) were included. In AIS curves, the apex was located at T8 (14) and T9 (6). Conventional sagittal radiographs of the whole spine were performed at maximal inspiration and exhalation. The ROM of each spinal thoracic functional segment (T1-T7, T7-T10, T10-T12) and the global T1-T12 ROM were measured. In healthy subjects, the mean T1-T12 ROM during forced breathing was 16.7±3.8. AIS patients showed a T1-T12 ROM of 1.1±1.5 (p<0.05), indicating a sagittal stiffness of the thoracic spine. A wide T7-T10 ROM (15.3±3.0) was found in healthy controls (91.6% of the T1–T12 ROM). AIS patients showed only 0.4±1.4 ROM at T7-T10 (36.4% of the T1-T12 ROM) (p<0.001). There was a significant positive correlation between the magnitude of T7-T10 kyphosis in maximal exhalation and both FVC (% of predicted FVC) and FEV1. In conclusion, Lenke 1A AIS patients show a restriction of the thoracic spine motion with an almost complete abolition of T7-T10 ROM, a crucial segment for deep breathing. T7-T10 stiffness could explain the ventilatory limitations found in AIS patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 43 - 43
11 Apr 2023
Amirouche F Mok J Leonardo Diaz R Forsthoefel C Hussain A
Full Access

Lateral lumbar interbody fusion (LLIF) has biomechanical advantages due to the preservation of ligamentous structures (ALL/PLL), and optimal cage height afforded by the strength of the apophyseal ring. We compare the biomechanical motion stability of multiple levels LLIF (4 segments) utilising PEEK interbody 26mm cages to stand-alone cage placement and with supplemental posterior fixation with pedicle screw and rods. Six lumbar human cadaver specimens were stripped of the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous structures and potted. Specimens were tested under 5 conditions: intact, posterior bilateral fixation (L1-L5) only, LLIF-only, LLIF with unilateral fixation and LLIF with bilateral fixation. Non-destructive testing was performed on a universal testing machine (MTS Systems Corp) to produce flexion-extension, lateral-bending, and axial rotation using customized jigs and a pulley system to define a non-constraining load follower. Three-dimensional spine motion was recorded using a motion device (Optotrak). Results are reported for the L3-L4 motion segment within the construct to allow comparison with previously published works of shorter constructs (1-2 segments). In all conditions, there was an observed decrease in ROM from intact in flexion/extension (31%-89% decrease), lateral bending (19%-78%), and axial rotation (37%-60%). At flexion/extension, the decreases were statistically significant (p<0.007) except for stand-alone LLIF. LLIF+unilateral had similar decreases in all planes as the LLIF+bilateral condition. The observed ROM within the 4-level construct was similar to previously reported results in 1-2 levels for stand-alone LLIF and LLIF+bilateral. Surgeons may be concerned about the biomechanical stability of an approach utilizing stand-alone multilevel LLIF. Our results show that 4-level multilevel LLIF utilizing 26 mm cages demonstrated ROM comparable to short-segment LLIF. Stand-alone LLIF showed a decrease in ROM from the intact condition. The addition of posterior supplemental fixation resulted in an additional decrease in ROM. The results suggest that unilateral posterior fixation may be sufficient


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 91 - 91
4 Apr 2023
ÇİL E Subaşı F Gökçek G Şerif T Şaylı U
Full Access

Recently, several smartphone applications (apps) have been developed and validated for ankle ROM measurement tools like the universal goniometer. This is the first innovative study introduces a new smartphone application to measure ankle joint ROM as a remote solution. This study aimed to assess the correlation between smartphone ROM and universal goniometer measurements, and also report the evaluation of the DijiA app by users. The study included 22 healthy university students (14F/8M; 20.68±1.72 years) admitted to Yeditepe University. Fourty four feet was measured by both the universal goniometer (UG) and DijiA app. The datas were analyzed through using the intraclass correlation coefficient (ICC). The DijiA app was evaluated by usability testing with representative users. Pearson correlation coefficient test showed moderate correlation between the DijiA and UG for dorsiflexion (DF) and plantar flexion (PF) measurements (Pearson correlation coefficient: r=0.323, for DF; r=0.435 for PF 95% confidence interval). The application usability was found as high with 76.5 average score and users liked it. The DijiA app may be a more convenient and easy way to measure ankle DF and PF-ROM than UG. It can be used to evaluate ROM in clinical practice or home using as a personal smartphone


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 83 - 83
17 Apr 2023
Tawy G McNicholas M Biant L
Full Access

Total knee arthroplasty (TKA) aims to alleviate pain and restore joint biomechanics to an equivalent degree to age-matched peers. Zimmer Biomet's Nexgen TKA was the most common implant in the UK between 2003 and 2016. This study compared the biomechanical outcomes of the Nexgen implant against a cohort of healthy older adults to determine whether knee biomechanics is restored post-TKA. Patients with a primary Nexgen TKA and healthy adults >55 years old with no musculoskeletal deficits or diagnosis of arthritis were recruited locally. Eligible participants attended one research appointment. Bilateral knee range of motion (RoM) was assessed with a goniometer. A motorised arthrometer (GENOUROB) was then used to quantify the anterior-posterior laxity of each knee. Finally, gait patterns were analysed on a treadmill. An 8-camera Vicon motion capture system generated the biomechanical model. Preliminary statistical analyses were performed in SPSS (α = 0.05; required sample size for ongoing study: n=21 per group). The patient cohort (n=21) was older and had a greater BMI than the comparative group (n=13). Patients also had significantly poorer RoM than healthy older adults. However, there were no inter-group differences in knee laxity, walking speed or cadence. Gait kinematics were comparable in the sagittal plane during stance phase. Peak knee flexion during swing phase was lower in the patient group, however (49.0° vs 41.1°). Preliminary results suggest that knee laxity and some spatiotemporal and kinematic parameters of gait are restored in Nexgen TKA patients. While knee RoM remains significantly poorer in the patient cohort, an average RoM of >110° was achieved. This suggests the implant provides sufficient RoM for most activities of daily living. Further improvements to knee kinematics may necessitate additional rehabilitation. Future recruitment drives will concentrate on adults over the age of 70 for improved inter-group comparability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 28 - 28
11 Apr 2023
Wither C Lawton J Clarke D Holmes E Gale L
Full Access

Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient biomechanics. This study aimed to quantify axial torque in the femur during ROM assessment in total hip arthroplasty to define performance criteria against which hip instruments can be verified. Longer term, this information may provide the ability to quantitatively assess joint stability, extending to quantitation of bone preparation and quality. Joint loads measured with strain-gaged instruments in five cadaveric femurs prepared using posterior approach were analysed. Variables such as surgeon-evaluator, trial offset and specimen leg and weight were used to define 13 individual setups and paired with surgeon appraisal of joint tension for each setup. Peak torque loads were then identified for specific motions within the ROM assessment. The largest torque measured in most setups was observed during maximum extension and external rotation of the joint, with a peak torque of 13Nm recorded in a specimen weighing 98kg. The largest torque range (19.4Nm) was also recorded in this specimen. Other motions within the trial reduction showed clear peaks in applied torque but with lower magnitude. Relationships between peak torque, torque range and specimen weight produced an R2 value greater than 0.65. The data indicated that key influencers of torsional loads during ROM were patient weight, joint tension and limb motion. This correlation with patient weight should be further investigated and highlights the need for population representation during cadaveric evaluation. Although this study considered a small sample size, consistent patterns were seen across several users and specimens. Follow-up studies should aim to increase the number of surgeon-evaluators and further vary specimen size and weight. Consideration should also be given to alternative surgical approaches such as the Direct Anterior Approach


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 12 - 12
11 Apr 2023
Swain L Shillabeer D Wyatt H Jonkers I Holt C Williams D
Full Access

Biplane video X-ray (BVX) – with models segmented from magnetic resonance imaging (MRI) – is used to directly track bones during dynamic activities. Investigating tibiofemoral kinematics helps to understand effects of disease, injury, and possible interventions. Develop a protocol and compare in-vivo kinematics during loaded dynamic activities using BVX and MRI. BVX (60 FPS) was captured whilst three healthy volunteers performed three repeats of lunge, stair ascent and gait. MRI scans were performed (Magnetom 3T Prisma, Siemens). 3D bone models of the tibia and femur were segmented (Simpleware Scan IP, Synopsis). Bone poses were obtained by manually matching bone models to X-rays (DSX Suite, C-Motion Inc.). Mean range of motion (ROM) of the contact points on the medial and lateral tibial plateau were calculated using custom MATLAB code (MathWorks). Results were filtered using an adaptive low pass Butterworth filter (Frequency range: 5-29Hz). Gait and Stair ascent activities from one participant's data showed increased ROM for medial-lateral (ML) translation in the medial compartment but decreased ROM in anterior-posterior (AP) translation when comparing against the same translations on the lateral compartment of the tibial plateau. Lunge activity showed increased ROM for both ML and AP translation in the medial compartment when compared with the lateral compartment. These results highlight the variability in condylar translations between different activities. Understanding healthy in-vivo kinematics across different activities allows the determination of suitable activities to best investigate the kinematic changes due to disease or injury and assess the efficacy of different interventions. Acknowledgements: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) doctoral training grant (EP/T517951/1)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 98 - 98
11 Apr 2023
Williams D Chapman G Esquivel L Brockett C
Full Access

To be able to assess the biomechanical and functional effects of ankle injury and disease it is necessary to characterise healthy ankle kinematics. Due to the anatomical complexity of the ankle, it is difficult to accurately measure the Tibiotalar and Subtalar joint angles using traditional marker-based motion capture techniques. Biplane Video X-ray (BVX) is an imaging technique that allows direct measurement of individual bones using high-speed, dynamic X-rays. The objective is to develop an in-vivo protocol for the hindfoot looking at the tibiotalar and subtalar joint during different activities of living. A bespoke raised walkway was manufactured to position the foot and ankle inside the field of view of the BVX system. Three healthy volunteers performed three gait and step-down trials while capturing Biplane Video X-Ray (125Hz, 1.25ms, 80kVp and 160 mA) and underwent MR imaging (Magnetom 3T Prisma, Siemens) which were manually segmented into 3D bone models (Simpleware Scan IP, Synopsis). Bone position and orientation for the Talus, Calcaneus and Tibia were calculated by manual matching of 3D Bone models to X-Rays (DSX Suite, C-Motion, Inc.). Kinematics were calculated using MATLAB (MathWorks, Inc. USA). Pilot results showed that for the subtalar joint there was greater range of motion (ROM) for Inversion and Dorsiflexion angles during stance phase of gait and reduced ROM for Internal Rotation compared with step down. For the tibiotalar joint, Gait had greater inversion and internal rotation ROM and reduced dorsiflexion ROM when compared with step down. The developed protocol successfully calculated the in-vivo kinematics of the tibiotalar and subtalar joints for different dynamic activities of daily living. These pilot results show the different kinematic profiles between two different activities of daily living. Future work will investigate translation kinematics of the two joints to fully characterise healthy kinematics


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 42 - 42
14 Nov 2024
Kato K Hayashi S
Full Access

Purpose. To compare postoperative clinical outcomes between posterior cruciate ligament (PCL) retaining and resecting total knee arthroplasty (TKA) using same cruciate-substituting (CS) inserts, and to elucidate the clinical relevance of the residual PCL in cruciate-retaining TKA, considering intraoperative influence factors, such as the posterior tibial slope, posterior condylar offset, joint gap, joint balance, and joint laxity. Methods. A total of 64 consecutive knees (44 patients) were enrolled in this study and divided into following two groups: 39 knees underwent PCL-retaining TKA group (CR group), and 25 underwent PCL-resecting TKA group (CS group). Preoperative patients’ demographic data and one-year postoperative clinical outcomes including range of motion, the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Japanese Orthopaedic Association (JOA) score, and Forgotten Joint Score-12 (FJS-12) were compared between two groups. Results. Regarding range of motion, the average preoperative ROM was -14.3/120.0 degrees in the CR group and improved to -2.4/118.9 degrees postoperatively. In the CS group, the average preoperative ROM was -7.5/130 degrees and changed to -2.2/122.4 degrees postoperatively. There was no significant difference in the postoperative ROM between the groups (P=0.16). The KOOS (from 47.1 to 69.5 in CR group; from 41.1 to 70.8 in CS group) and JOA scores (from 59.2 to 76.9 in CR group; from 55.6 to 80.8 in CS group) were significantly improved postoperatively in both groups (P < 0.01). However, there was no significance in these postoperative scores between two groups (P = 0.09). There was also no significance in FJS-12 between two groups (70.3 in CR group and 66.9 in CS group; P=0.53). Conclusions. Residual PCL in TKA with a CS insert would not impact one-year postoperative clinical outcomes including KOOS, JOA, and FJS-12


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 94 - 94
4 Apr 2023
Çil E Subaşı F Şaylı U
Full Access

Plantar fasciitis (PF) is one of the widespread conditions causing hindfoot pain. The most common presenting symptoms are functional limitation and pain (first step and activity) on plantar surface of the foot. The non-operative treatments provide complete resolution of pain in 90% of patients, but functional limitation still remains as a risk factor for recurrency of PF. Although the number of non-operative treatment options showing efficacy on pain and functional limitation are excessive, the evidences are limited for functional limitation. Additionally, Mulligan mobilization with movement (MMWM) in Chronic Plantar Fasciitis has been poorly studied in the literature. According to these findings, the study was aimed to determine effectiveness of Mulligan mobilization with movement on Chronic Plantar Fasciitis. A total of 25 patients (40 feet) with chronic PF were included in the study. The patients were randomly divided into Mulligan concept rehabilitation group (PF-M, n=20 feet) and Home Rehabilitation group (PF-H, n=20 feet). (MMWM), Foot and ankle exercises program were applied to PF-M, twice a week totally 8 week (16 sessions) and foot- ankle exercises as a home program were given for PF-H, 8 weeks. The range of motion (ROM) for dorsiflexion and plantar flexion was measured by using a manual goniometer. Pain, disability and activity restriction were assessed by Foot Function Index (FFI) . The first step morning pain was evaluated by Visual Analogue Scale (VAS) and Kinesiophobia was also reported by using Tampa Scale (TSK). Patients were evaluated at baseline and 8 weeks. FFI, VAS, TSK, ROM values improved in all groups (intragroup variability) at 8th week (P < .05). The other result indicated that ROM values for DF and PF and TSK scores in PF-M had more significant improvement than PF-H (p<.05). To the best of our knowledge this is the first randomised controlled trial for investigating Mulligan Concept efficiancy on chronic PF. Both Mulligan mobilization with movement (MMWM) and exercise protocols are effective for chronic PF. Furthermore, The Mulligan concept seems more effective treatment option in reducing kinesiophobia and improving functional capacity


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 18 - 18
1 Mar 2021
Ng G Bankes M Grammatopoulos G Jeffers J Cobb J
Full Access

Abstract. OBJECTIVES. Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM). METHODS. Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°); and performed internal-external rotations to 5 Nm in each position. Independent t-tests compared the anatomical parameters and ROM between FAI and DDH (CI = 95%). Multiple linear regressions determined which anatomical parameters could predict ROM. RESULTS. The FAI group demonstrated restricted ROM in deep hip flexion, with DDH showing higher ROM in Flexion 30° (+20%, p = 0.03), 60° (+31%, p = 0.001), and 90° (+36%, p = 0.001). In Neutral 0° and Flexion 30°, femoral neck and version angles together predicted ROM (R. 2. = 60%, 58% respectively); whereas in Flexion 60°, pelvic incidence and femoral neck angle predicted ROM (R. 2. = 77%). In Flexion 90°, pelvic incidence and radial alpha angle together predicted ROM (R. 2. = 81%), where pelvic incidence alone accounted for 63% of this variance. CONCLUSIONS. Pelvic incidence is essential to predict hip ROM. Although a cam deformity or acetabular undercoverage can elevate risks of labral tears and progressive joint degeneration, they may not be primary indicators of restrictive hip impingement or dysplastic instability. Better delineating additional spinopelvic characteristics can formulate early diagnostic tools and improve opportunities for nonsurgical management. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 53 - 53
1 Dec 2020
Çil ET Gökçek G Şaylı U Şerif T Subaşı F
Full Access

Foot pain and related problems are quite common in the community. It is reported that 24% of individuals older than 45 experienced foot pain. Also, it is stated that at least two thirds of individuals experiences moderate physical disability due to foot problems. In the absence of evaluation of risk factors such as limited ankle dorsiflexion in the early period of the diseases (Plantar fasciitis, Achilles Tendinopathy e.g.) and the lack of mobile systems with portable remote access, foot pain becomes refractory/chronic foot pain, secondary pathologies and ends with workload of 1., 2. and 3rd level healthcare services. In the literature, manuel and dijital methods have been used to analyze the ankle range of motion (ROM). These studies are generally based on placing protractors on the image and / or angle detection from inclination measurement by using the gyroscope sensor of the mobile device. Some of these applications are effective and they are designed to be suitable for measuring in a clinical setting by a physician or physiotherapist. To the best of our knowledge, there is no system developed to measure real-time ankle ROM remotely with collaboration of the patients. In this research, we proposed to develop an ankle ROM analyze system with smart phone application that can be used comfortably by subjects. We present a case of a 22-year-old male with a symptomatic pes planus. The mobile application, which was used for data collection, was designed and implemented for Android devices. Initially, before the mobile application home page is opened, a consent page was submitted to the acceptance of individual within the scope of Law (KVKK) data privacy. Then, the participant was asked to state his sociodemographic characteristics [age, gender, height, weight] and dominant side. No history of foot-ankle injury, trauma, and surgery was recorded. Activity pain of the foot was 6 according to visual anolog scale (VAS) in the mobile application. His ankle dorsiflexion was 15 ° by manuel goniometer. Besides, server was responsible for storing the collected data and ROM measurement. ROM was calculated by processing the foot video which was sent through the mobile application. During the processing phase, a segmentation model was used which was trained with image process and deep learning methods. With the developed system, we obtained the manual goniometric measurement result with 2 degrees deviation. As the application is calibrated, it is expected to approach the actual measurement of ROM. We can conclude that mobile app-goniometer result in dorsiflexion measurement is a novel promising evaluation method for ankle ROM. it will be easy and practical to detect and monitor risk factor of the diseases, decrease medical costs, provide health services in rural areas, and contribution to life quality and to reduce the workload on physicians and physiotherapist


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 37 - 37
1 Dec 2020
Yıldırımkaya B Söylemez MS Uçar BY Akpınar F
Full Access

Introduction and Purpose. Metacarpal fractures constitute approximately one third of all hand fractures. The majority of these fractures are treated by conservative non-surgical methods. The aim of this study is to obtain the appropriate anatomical alignment of the fracture with dynamic metacarpal stabilization splint (DMSS) and to maintain the proper bone anatomy until the union is achieved. In addition, by comparing this method with short arm plaster splint (SAPS) application, it is aimed to evaluate whether patients are superior in terms of comfort, range of motion (ROM) and grip strength. Materials and Methods. In our study, SAPS or DMSS was applied to the patients with 5th metacarpal neck fracture randomly after fracture reduction and followed for 3 months. A total of 119 patients with appropriate criteria were included in the study. Radiological alignment of the fracture and amount of joint movements were evaluated during follow-up. Grip strength was evaluated with Jamar dynamometer. EQ-5D-5L and VAS scores were used for clinical evaluation. Results. 103 patients completed their follow-up. 51 patients were treated with SAPS and 52 patients were treated with DMSS. The mean age of the SAPS was 29.5 (SD ± 9.4; 16–53 years) and the mean age of the DMSS group was 27.8 (SD ± 11.6; 16–63). Pressure sores was seen in 5 patients in the DMSS group, while no pressure sore was seen in the SAPS (p = 0.008). There was no significant difference between the two groups in the VAS scores at all times. There was no significant difference between the mean dorsal cortical angulation (DCA) before the reduction, after the reduction and at the third month follow-ups. There was no statistically significant difference between the length of metacarps at first admittion before reduction, after reduction and at third month follow-ups. When the grip strength of the two groups were compared as a percentage, the grip strength of the patients in the DMSS group was found to be higher at 1st month, 2nd month and 3rd month (p <0.001). When the ROM values of the patients were evaluated, DMSS group had a higher degree of ROM in the first month compared to the SAPS group (p <0.001). No statistically significant difference was detected among groups at third month in the ROM of the IP and MP joints. However, wrist ROM was statistically higher in DMSS group at 3rd month (p <0.05). There was a statistically significant difference between EuroQol scores in favor of DMSA group (p <0.05). Discussion and Conclusion. In stable 5th metacarpal neck fractures, DMSA is as effective as SAPS to maintain bone anatomy. In addition, DMSA can be preferred for fixation plaster splint or circular plaster applications for the prevention of reduction in boxer fractures, with the advantage of having high clinical scores, which is an indication of early acquisition of grip strength, ease of use and patient comfort


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 54 - 54
2 Jan 2024
İlicepinar Ö Imir M Cengiz B Gürses S Menderes Y Turhan E Dönmez G Korkusuz F
Full Access

Hop tests are used to determine return to sports after ACL reconstruction. They mostly measure distance and symmetry but do not assess kinematics and kinetics. Recently, biomechanical evaluations have been incorporated into these functional jump tests for the better assessment of return to sport. We assessed the sagittal plane range of motion (ROM) of the knee, the deviation axis of rotation (DAOR), and the vertical ground reaction force (vGRF) normalized to body weight in nine healthy participants during the single leg (SLH) and crossover hop tests (COHT). Participants' leg lengths were measured. Jumping distances were marked in the test area as being 4/5 of the leg length. Four sensors were placed on the thighs, the legs and the feet. These body parts were handled as a single rigid body. Eight 480 Hz cameras were used to capture the movements of these rigid bodies. vGRF at landing were measured using a force plate (Bertec, Inc, USA). The ROM of the knee joint and the DAOR were obtained from kinematic data. Participants' joint kinematics metrics were similar in within-subjects statistical tests for SLH and COHT. We therefore asked whether the repeated vGRF normalized to body weight will be similar in both legs during these jumps. Joint kinematics metrics however were different in between subjects indicating the existence of a personalized jumping strategy. These hop tests can be recorded at the beginning of the training season for each individual, which can establish a comparative evaluation database for prospective lower extremity injury recovery and return to sport after ACL injury


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 24 - 24
2 Jan 2024
Burgos J Mariscal G Antón-Rodrigálvarez L Sanpera I Hevia E García V Barrios C
Full Access

The aim of this study was to report the restauration of the normal vertebral morphology and the absence of curve progression after removal the instrumentation in AIS patients that underwent posterior correction of the deformity by common all screws construct whitout fusion. A series of 36 AIS immature patients (Risser 3 or less) were include in the study. Instrumentation was removed once the maturity stage was complete (Risser 5). Curve correction was assessed at pre and postoperative, before instrumentation removal, just post removal, and more than two years after instrumentation removal. Epiphyseal vertebral growth modulation was assessed by a coronal wedging ratio (WR) at the apical level of the main curve (MC). The mean preoperative coronal Cobb was corrected from 53.7°±7.5 to 5.5º±7.5º (89.7%) at the immediate postop. After implants removal (31.0±5.8 months) the MC was 13.1º. T5–T12 kyphosis showed a significant improvement from 19.0º before curve correction to 27.1º after implants removal (p<0.05). Before surgery, WR was 0.71±0.06, and after removal WR was 0.98±0.08 (p<0.001). At the end of follow-up, the mean sagittal range of motion (ROM) of the T12-S1 segment was 51.2±21.0º. SRS-22 scores improved from 3.31±0.25 preoperatively to 3.68±0.25 at final assessment (p<0.001). In conclusion, fusionless posterior approach using a common all pedicle screws construct correct satisfactory scoliotic main curves and permits removal of the instrumentation once the bone maturity is reached. The final correction was highly satisfactory and an acceptable ROM of the previously lower instrumented segments was observed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 28 - 28
14 Nov 2024
Heumann M Jacob A Gueorguiev B Richards G Benneker L
Full Access

Introduction. Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured vertebra during healing with a pedicle-screw-rod constructs. As healing is taking place the load shifts from the implant back to the spine. Monitoring the load-induced deflection of the rods over time would allow quantifiable postoperative assessment of healing progress without the need for radiation exposure or frequent hospital visits. This approach, previously demonstrated to be effective in assessing fracture healing in long bones and monitoring posterolateral spinal fusion in sheep, is now being investigated for its potential in evaluating lumbar vertebra transosseous fracture healing. Method. Six human cadaveric spines were instrumented with pedicle-screws and rods spanning L3 vertebra. The spine was loaded in Flexion-Extension (FE), Lateral-Bending (LB) and Axial-Rotation (AR) with an intact L3 vertebra (representing a healed vertebra) and after transosseous disruption, creating an AO type B1 fracture. The implant load on the rod was measured using an implantable strain sensor (Monitor) on one rod and on the contralateral rod by a strain gauge to validate the Monitor's measurements. In parallel the range of motion (ROM) was assessed. Result. The ROM increased significantly in all directions in the fractured model (p≤0.049). The Monitor measured a significant increase in implant load in FE (p=0.002) and LB (p=0.045), however, not in AR. The strain gauge detected an increased implant load not only in FE (p=0.001) and LB (p=0.016), but also in AR (p=0.047). The highest strain signal was found during LB for both, the Monitor, and the strain gauge. Conclusion. After a complete transosseous disruption of L3 vertebra the load on the implants was significantly higher than in the intact respectively healed state. Innovative implantable sensors could be used to monitor those changes allowing the assessment of healing progression based on quantifiable data rather than CT-imaging


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 15 - 15
14 Nov 2024
Heumann M Feng C Benneker L Spruit M Mazel C Buschbaum J Gueorguiev B Ernst M
Full Access

Introduction. In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo sheep model. The question arises to whether such a strain sensing system could be used to monitor bone fusion following lumbar interbody fusion surgery, where the intervertebral space is supported by a cage. Therefore, the aim of this study was to test human cadaveric lumbar spines in two states: after a transforaminal lumbar interbody fusion (TLIF) procedure combined with a pedicle-screw-rod-construct (PSR) and subsequently after simulating bone fusion. The study hypothesized that the load on the posterior instrumentation decreases as the segment stiffens due to simulated fusion. Method. A TLIF procedure with PSR was performed on eight human cadaveric spines at level L4-L5. Strain sensors were attached bilaterally to the rods to derive implant load changes during unconstrained flexion-extension (FE), lateral bending (LB) and axial rotation (AR) loads up to ±7.5Nm. The specimens were retested after simulating bone fusion between vertebrae L4-L5. In addition, the range of motion (ROM) was measured during each loading mode. Result. The ROM decreased in the simulated bone fusion state in all loading directions (p≤0.002). In both states, the measured strain on the posterior instrumentation was highest during LB motion. Furthermore, the sensors detected a significant decrease in the load induced rod strain (p≤0.002) between TLIF+PSR and simulated bone fusion state in LB. Conclusion. Implant load measured via rod strain sensors can be used to monitor the progression of fusion after a TLIF procedure when measured during LB of the lumbar spine. However, further research is needed to investigate the influence of daily loading scenarios expected in-vivo on the overall change in implant load