Advertisement for orthosearch.org.uk
Results 1 - 20 of 345
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). Methods. A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion. Results. RSA analysis showed a small increase in all translation and rotational values up to six months postoperatively, consistent with settling of the implant. The mean values plateaued by 12 months, with no evidence of further migration. In four patients, there was significant variation outside the mean, which corresponded to postoperative complications. There was a significant improvement in the clinical and patient-reported outcomes from the preoperative values to those at two years postoperatively (p < 0.001). Conclusion. These findings show, using RSA, that a glenoid baseplate composite of a trabecular titanium peg with autograft stabilizes within the glenoid about 12 months after surgery, and reinforce findings from a previous study of this implant/graft with CT scans at two years postoperatively, indicating that this type of structural composite results in sound early fixation. Cite this article: Bone Joint J 2023;105-B(8):912–919


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial migration. No differences were found for the clinical and functional outcomes. Conclusion. The BCR-TKA shows a different kinematic pattern in early flexion/late extension compared to the CR-TKA. The difference between both implants is mostly visible in the flexion phase in which the anterior cruciate ligament is effective; however, both designs fail to fully replicate the motion of a natural knee. The higher migration of the BCR-TKA was concerning and highlights the importance of longer follow-up. Cite this article: Bone Joint J 2023;105-B(1):35–46


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 40 - 47
1 Jul 2019
Sporer S MacLean L Burger A Moric M

Aims. Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. Patients and Methods. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis. Results. Patient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar migration was largest over the first six postoperative weeks, with no changes in mean tibia migration occurring after six months, and no changes in mean patellar migration occurring after six weeks. One patellar component showed a rapid rate of migration between 12 and 24 months. Conclusion. Biological fixation appears to occur reliably on the highly porous implant surface of the tibial baseplate and metal-backed patellar component. Rapid migration after 12 months was measured for one patellar component. Further investigation is required to assess the long-term stability of the 3D-printed components and to determine if the high-migrating components achieve fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):40–47


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1168 - 1176
1 Nov 2023
Yüksel Y Koster LA Kaptein BL Nelissen RGHH den Hollander P

Aims. Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes. Methods. A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively. Results. At five-year follow-up, RSA data from 61 patients were available and the mean maximum total point motion (MTPM) of the femoral components were: ATTUNE: 0.96 mm (95% confidence interval (CI) 0.79 to 1.14) and PFC-Sigma 1.37 mm (95% CI 1.18 to 1.59) (p < 0.001). The PFC-Sigma femoral component migrated more in the first postoperative year, but stabilized thereafter. MPTM of the tibial components were comparable at five-year follow-up: ATTUNE 1.12 mm (95% CI 0.95 to 1.31) and PFC-Sigma 1.25 mm (95% CI 1.07 to 1.44) (p = 0.438). RLL at the medial tibial implant-cement interface remained more prevalent for the ATTUNE at five-year follow-up compared to the PFC-Sigma (20% vs 3%). RLL did not progress over time, and varied between patients at different timepoints for both TKA systems. Clinical outcomes and PROMs improved compared with preoperative scores, and were not different between groups. Conclusion. MTPM migration at five-year follow-up of the femoral and tibial component of the ATTUNE were similar and as low as that of the PFC-Sigma. MTPM migration of both knee implants did not significantly change from one year post-surgery, indicating stable fixation. Long-term ATTUNE performance may be expected to be comparable to the clinically well-performing PFC-Sigma. We have not found evidence of increased tibial component migration as measured by RSA to support concerns about cement debonding and a higher risk of aseptic loosening with the ATTUNE TKA. Cite this article: Bone Joint J 2023;105-B(11):1168–1176


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 136 - 143
1 Feb 2024
van der Lelij TJN Marang-van de Mheen PJ Kaptein BL Koster LA Ljung P Nelissen RGHH Toksvig-Larsen S

Aims. The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface. Methods. Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using radiostereometric analysis (RSA), with radiographs taken within two days of surgery (baseline), and at three, 12, and 24 months postoperatively. Proximal acetabular component migration was the primary outcome measure. Clinical scores and patient-reported outcome measures (PROMs) were collected at each follow-up. Results. Mean proximal migrations at three, 12, and 24 months were 0.08 mm (95% confidence interval (CI) 0.03 to 0.14), 0.11 mm (95% CI 0.06 to 0.16), and 0.14 mm (95% CI 0.09 to 0.20), respectively, in the Trident II HA group, versus 0.11 mm (95% CI 0.06 to 0.16), 0.12 mm (95% CI 0.07 to 0.17), and 0.14 mm (95% CI 0.09 to 0.19) in the Trident HA group (p = 0.875). No significant differences in translations or rotations between the two designs were found in any other direction. Clinical scores and PROMs were comparable between groups, except for an initially greater postoperative improvement in Hip disability and Osteoarthritis Outcome Symptoms score in the Trident HA group (p = 0.033). Conclusion. The Trident II clusterhole HA shell has comparable migration with its predecessor, the Trident hemispherical HA cluster shell, suggesting a similar risk of long-term aseptic loosening. Cite this article: Bone Joint J 2024;106-B(2):136–143


Aims. The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). Methods. A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints. Results. There was no clinically relevant difference in terms of tibial component migration, insert wear, and PROMs between the HXLPE and PE groups. The mean difference in tibial component migration (maximal total point migration (MTPM)) was 0.02 mm (95% confidence interval (CI) -0.07 to 0.11), which is below the value of 0.2 mm considered to be clinically relevant. Wear after five years for HXLPE was 0.16 mm (95% CI 0.05 to 0.27), and for PE was 0.23 mm (95% CI 0.12 to 0.35). The mean difference in wear rate was 0.01 mm/year (95% CI -0.02 to 0.05) in favour of the HXLPE group. Wear is mainly present on the medial side of the insert. Conclusion. There is no clinically relevant difference in tibial component migration and insert wear for up to five years between the HXLPE conventional PE inserts. For the implant studied, the potential advantages of a HXLPE insert remain to be proven under clinical conditions at longer-term follow-up. Cite this article: Bone Joint J 2023;105-B(5):518–525


Bone & Joint Research
Vol. 6, Issue 6 | Pages 376 - 384
1 Jun 2017
Stentz-Olesen K Nielsen ET De Raedt S Jørgensen PB Sørensen OG Kaptein BL Andersen MS Stilling M

Objectives. Static radiostereometric analysis (RSA) using implanted markers is considered the most accurate system for the evaluation of prosthesis migration. By using CT bone models instead of markers, combined with a dynamic RSA system, a non-invasive measurement of joint movement is enabled. This method is more accurate than current 3D skin marker-based tracking systems. The purpose of this study was to evaluate the accuracy of the CT model method for measuring knee joint kinematics in static and dynamic RSA using the marker method as the benchmark. Methods. Bone models were created from CT scans, and tantalum beads were implanted into the tibia and femur of eight human cadaver knees. Each specimen was secured in a fixture, static and dynamic stereoradiographs were recorded, and the bone models and marker models were fitted to the stereoradiographs. Results. Results showed a mean difference between the two methods in all six degrees of freedom for static RSA to be within -0.10 mm/° and 0.08 mm/° with a 95% limit of agreement (LoA) ranging from ± 0.49 to 1.26. Dynamic RSA had a slightly larger range in mean difference of -0.23 mm/° to 0.16 mm/° with LoA ranging from ± 0.75 to 1.50. Conclusions. In a laboratory-controlled setting, the CT model method combined with dynamic RSA may be an alternative to previous marker-based methods for kinematic analyses. Cite this article: K. Stentz-Olesen, E. T. Nielsen, S. De Raedt, P. B. Jørgensen, O. G. Sørensen, B. L. Kaptein, M. S. Andersen, M. Stilling. Validation of static and dynamic radiostereometric analysis of the knee joint using bone models from CT data. Bone Joint Res 2017;6:376–384. DOI: 10.1302/2046-3758.66.BJR-2016-0113.R3


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1579 - 1584
1 Dec 2018
Turgeon TR Gascoyne TC Laende EK Dunbar MJ Bohm ER Richardson CG

Aims. The introduction of a novel design of total knee arthroplasty (TKA) must achieve outcomes at least as good as existing designs. A novel design of TKA with a reducing radius of the femoral component and a modified cam-post articulation has been released and requires assessment of the fixation to bone. Radiostereometric analysis (RSA) of the components within the first two postoperative years has been shown to be predictive of medium- to long-term fixation. The aim of this study was to assess the stability of the tibial component of this system during this period of time using RSA. Patients and Methods. A cohort of 30 patients underwent primary, cemented TKA using the novel posterior stabilized fixed-bearing (ATTUNE) design. There was an even distribution of men and women (15:15). The mean age of the patients was 64 years (sd 8) at the time of surgery; their mean body mass index (BMI) was 35.4 kg/m2 (sd 7.9). RSA was used to assess the stability of the tibial component at 6, 12, and 24 months compared with a six-week baseline examination. Patient-reported outcome measures were also assessed. Results. The mean maximum total point motion (MTPM) of the tibial component between 12 and 24 months postoperatively was 0.08 mm (sd 0.08), which is well below the published threshold of 0.2 mm (p < 0.001). Patient-reported outcome measures consistently improved. Conclusion. The tibial component of this novel design of TKA showed stability between assessment 12 and 24 months postoperatively, suggesting an acceptably low risk of medium- to long-term failure due to aseptic loosening


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1016 - 1024
1 Aug 2020
Hasan S van Hamersveld KT Marang-van de Mheen PJ Kaptein BL Nelissen RGHH Toksvig-Larsen S

Aims. Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the migration of cementless, 3D-printed TKA to cemented TKA of a similar design up to two years of follow-up using radiostereometric analysis (RSA) known for its ability to predict aseptic loosening. Methods. A total of 72 patients were randomized to either cementless 3D-printed or a cemented cruciate retaining TKA. RSA and clinical scores were evaluated at baseline and postoperatively at three, 12, and 24 months. A mixed model was used to analyze the repeated measurements. Results. The mean maximum total point motion (MTPM) at three, 12, and 24 months was 0.33 mm (95% confidence interval (CI) 0.25 to 0.42), 0.42 mm (95% CI 0.33 to 0.51), and 0.47 mm (95% CI 0.38 to 0.57) respectively in the cemented group, versus 0.52 mm (95% CI 0.43 to 0.63), 0.62 mm (95% CI 0.52 to 0.73), and 0.64 mm (95% CI 0.53 to 0.75) in the cementless group (p = 0.003). However, using three months as baseline, no difference in mean migration between groups was found (p = 0.497). Three implants in the cemented group showed a > 0.2 mm increase in MTPM between one and two years of follow-up. In the cementless group, one implant was revised due to pain and progressive migration, and one patient had a liner-exchange due to a deep infection. Conclusion. The cementless TKA migrated more than the cemented TKA in the first two-year period. This difference was mainly due to a higher initial migration of the cementless TKA in the first three postoperative months after which stabilization was observed in all but one malaligned and early revised TKA. Whether the biological fixation of the cementless implants will result in an increased long-term survivorship requires a longer follow-up. Cite this article: Bone Joint J 2020;102-B(8):1016–1024


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims. Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years. Patients and Methods. A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up. Results. In total, 73 patients (82%) completed the seven-year visit. Mean seven-year linear proximal penetration was -0.07 mm (. sd. 0.16) and 0.00 mm (. sd. 0.22) for the VEPE and ModXLPE cohorts, respectively (p = 0.116). PROMs (p = 0.310 to 0.807) and radiolucency incidence (p = 0.330) were not different between the polyethylene cohorts. The mean proximal shell migration rate was 0.04 mm per year (. sd. 0.09). At seven years, patients with radiolucency (34%) demonstrated greater migration (mean difference: 0.6 mm (. sd. 0.2); p < 0.001). PROMs were lower for patients with radiolucency and greater proximal migration (p = 0.009 to p = 0.045). No implants were revised for aseptic loosening. Conclusion. This is the first randomized controlled trial to report seven-year RSA results for VEPE. All wear rates were below the previously reported osteolysis threshold (0.1 mm per year). PTC shells demonstrated acceptable primary stability through seven years, as indicated by low migration and lack of aseptic loosening. However, patients with acetabular radiolucency were associated with higher shell migration and lower PROM scores. Cite this article: Bone Joint J 2019;101-B:760–767


Bone & Joint Open
Vol. 4, Issue 5 | Pages 385 - 392
24 May 2023
Turgeon TR Hedden DR Bohm ER Burnell CD

Aims. Instability is a common cause of failure after total hip arthroplasty. A novel reverse total hip has been developed, with a femoral cup and acetabular ball, creating enhanced mechanical stability. The purpose of this study was to assess the implant fixation using radiostereometric analysis (RSA), and the clinical safety and efficacy of this novel design. Methods. Patients with end-stage osteoarthritis were enrolled in a prospective cohort at a single centre. The cohort consisted of 11 females and 11 males with mean age of 70.6 years (SD 3.5) and BMI of 31.0 kg/m. 2. (SD 5.7). Implant fixation was evaluated using RSA as well as Western Ontario and McMaster Universities Osteoarthritis Index, Harris Hip Score, Oxford Hip Score, Hip disability and Osteoarthritis Outcome Score, 38-item Short Form survey, and EuroQol five-dimension health questionnaire scores at two-year follow-up. At least one acetabular screw was used in all cases. RSA markers were inserted into the innominate bone and proximal femur with imaging at six weeks (baseline) and six, 12, and 24 months. Independent-samples t-tests were used to compare to published thresholds. Results. Mean acetabular subsidence from baseline to 24 months was 0.087 mm (SD 0.152), below the critical threshold of 0.2 mm (p = 0.005). Mean femoral subsidence from baseline to 24 months was -0.002 mm (SD 0.194), below the published reference of 0.5 mm (p < 0.001). There was significant improvement in patient-reported outcome measures at 24 months with good to excellent results. Conclusion. RSA analysis demonstrates excellent fixation with a predicted low risk of revision at ten years of this novel reverse total hip system. Clinical outcomes were consistent with safe and effective hip replacement prostheses. Cite this article: Bone Jt Open 2023;4(5):385–392


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1045 - 1051
1 Oct 2023
Turgeon TR Righolt CH Burnell CD Gascoyne TC Hedden DR Bohm ER

Aims. The primary aim of this trial was to compare the subsidence of two similar hydroxyapatite-coated titanium femoral components from different manufacturers. Secondary aims were to compare rotational migration (anteversion/retroversion and varus/valgus tilt) and patient-reported outcome measures between both femoral components. Methods. Patients were randomized to receive one of the two femoral components (Avenir or Corail) during their primary total hip arthroplasty between August 2018 and September 2020. Radiostereometric analysis examinations at six, 12, and 24 months were used to assess the migration of each implanted femoral component compared to a baseline assessment. Patient-reported outcome measures were also recorded for these same timepoints. Overall, 50 patients were enrolled (62% male (n = 31), with a mean age of 65.7 years (SD 7.3), and mean BMI of 30.2 kg/m. 2. (SD 5.2)). Results. The two-year subsidence was similar for Avenir (-0.018 mm (95% confidence interval (CI) -0.053 to 0.018) and Corail (0.000 mm (95% CI -0.027 to 0.026; p = 0.428). Both anteversion/retroversion (Avenir 0.139° (95% CI -0.204 to 0.481°); Corail -0.196° (95% CI -0.445 to 0.053°; p = 0.110) and varus/valgus tilt (Avenir -0.024° (95% CI -0.077 to 0.028); Corail -0.049° (95% CI -0.098 to 0.000°; p = 0.473) were not statistically significantly different. After two years, patients reported similar improvements in EuroQol five-dimension five-level health questionnaire (Avenir 0.22 (SD 0.2); Corail 0.22 (SD 0.18); p = 0.965) and other outcomes scores. Patient satisfaction on a five-point Likert scale was also similar between both groups after two years (Avenir 1.38 (SD 0.88); Corail 1.33 (SD 0.57); p = 0.846). Conclusion. The performance of both femoral components was similar in terms of stability and patient outcomes. Cite this article: Bone Joint J 2023;105-B(10):1045–1051


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 81 - 81
19 Aug 2024
Angelomenos V Shareghi B Itayem R Mohaddes M
Full Access

Early micromotion of hip implants measured with radiostereometric analysis (RSA) is a predictor for late aseptic loosening. Computed Tomography Radiostereometric Analysis (CT-RSA) can be used to determine implant micro-movements using low-dose CT scans. CT-RSA enables a non-invasive measurement of implants. We evaluated the precision of CT-RSA in measuring early stem migration. Standard marker-based RSA was used as reference. We hypothesised that CT-RSA can be used as an alternative to RSA in assessing implant micromotions. We included 31 patients undergoing Total Hip Arthroplasty (THA). Distal femoral stem migration at 1 year was measured with both RSA and CT-RSA. Comparison of the two methods was performed with paired-analysis and Bland-Altman plots. Furthermore, the inter- and intraobserver reliability of the CT-RSA method was evaluated. No statistical difference was found between RSA and CTMA measurements. The Bland-Altman plots showed good agreement between marker-based RSA and CT-RSA. The intra- and interobserver reliability of the CT-RSA method was found to be excellent (≥0.992). CT-RSA is comparable to marker-based RSA in measuring distal femoral stem migration. CTMA can be used as an alternative method to detect early implant migration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 24 - 24
14 Nov 2024
Petersen ET Linde KN Burvil CCH Rytter S Koppens D Dalsgaard J Hansen TB Stilling M
Full Access

Introduction. Knee osteoarthritis often causes malalignment and altering bone load. This malalignment is corrected during total knee arthroplasty surgery, balancing the ligaments. Nonetheless, preoperative gait patterns may influence postoperative prosthesis load and bone support. Thus, the purpose is to investigate the impact of preoperative gait patterns on postoperative femoral and tibial component migration in total knee arthroplasty. Method. In a prospective cohort study, 66 patients with primary knee osteoarthritis undergoing cemented Persona total knee arthroplasty were assessed. Preoperative knee kinematics was analyzed through dynamic radiostereometry and motion capture, categorizing patients into four homogeneous gait patterns. The four subgroups were labeled as the flexion group (n=20), the abduction (valgus) group (n=17), the anterior drawer group (n=10), and the tibial external rotation group (n=19). The femoral and tibial component migration was measured using static radiostereometry taken supine on the postoperative day (baseline) and 3-, 12-, and 24- months after surgery. Migration was evaluated as maximum total point motion. Result. Of the preoperatively defined four subgroups, the abduction group with a valgus-characterized gait pattern exhibited the highest migration for both the femoral (1.64 mm (CI95% 1.25; 2.03)) and tibial (1.21 mm (CI95% 0.89; 1.53)) components at 24-month follow-up. For the femoral components, the abduction group migrated 0.6 mm (CI95% 0.08; 1.12) more than the external rotation group at 24 months. For the tibial components, the abduction group migrated 0.43 mm (CI95% 0.16; 0.70) more than the external rotation group at 3 months. Furthermore, at 12- and 24-months follow-up the abduction group migrated 0.39 mm (95%CI 0.04; 0.73) and 0.45 mm (95%CI 0.01; 0.89) more than the flexion group, respectively. Conclusion. A preoperative valgus-characterized gait pattern seems to increase femoral and tibial component migration until 2 years of follow-up. This suggests that the implant fixation depends on load distributions originating from specific preoperative gait patterns


Aims. The aim of this study was to compare the migration of the femoral component, five years postoperatively, between patients with a highly cross-linked polyethylene (HXLPE) insert and those with a conventional polyethylene (PE) insert in an uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary aims included clinical outcomes and patient-reported outcome measures (PROMs). We have previously reported the migration and outcome of the tibial components in these patients. Methods. A double-blinded randomized controlled trial was conducted including 96 TKAs. The migration of the femoral component was measured with radiostereometry (RSA) at three and six months and one, two, and five years postoperatively. PROMs were collected preoperatively and at all periods of follow-up. Results. There was no clinically relevant difference in terms of migration of the femoral component or PROMs between the HXLPE and PE groups. The mean difference in migration (maximum total point motion), five years postopeatively, was 0.04 mm (95% CI -0.06 to 0.16) in favour of the PE group. Conclusion. There was no clinically relevant difference in migration of the femoral component, for up to five years between the two groups. These findings will help to establish a benchmark for future studies on migration of femoral components in TKA. Cite this article: Bone Joint J 2024;106-B(8):826–833


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 148 - 148
4 Apr 2023
Jørgensen P Kaptein B Søballe K Jakobsen S Stilling M
Full Access

Dual mobility hip arthroplasty utilizes a freely rotating polyethylene liner to protect against dislocation. As liner motion has not been confirmed in vivo, we investigated the liner kinematics in vivo using dynamic radiostereometry. 16 patients with Anatomical Dual Mobility acetabular components were included. Markers were implanted in the liners using a drill guide. Static RSA recordings and patient reported outcome measures were obtained at post-op and 1-year follow-up. Dynamic RSA recordings were obtained at 1-year follow-up during a passive hip movement: abduction/external rotation, adduction/internal rotation (modified FABER-FADIR), to end-range and at 45° hip flexion. Liner- and neck movements were described as anteversion, inclination and rotation. Liner movement during modified FABER-FADIR was detected in 12 of 16 patients. Median (range) absolute liner movements were: anteversion 10° (5–20), inclination 6° (2–12), and rotation 11° (5–48) relative to the cup. Median absolute changes in the resulting liner/neck angle (small articulation) was 28° (12–46) and liner/cup angle (larger articulation) was 6° (4–21). Static RSA showed changes in median (range) liner anteversion from 7° (-12–23) postoperatively to 10° (-3–16) at 1-year follow-up and inclination from 42 (35–66) postoperatively to 59 (46–80) at 1-year follow-up. Liner/neck contact was associated with high initial liner anteversion (p=0.01). The polyethylene liner moves over time. One year after surgery the liner can move with or without liner/neck contact. The majority of movement is in the smaller articulation between head and liner


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_7 | Pages 11 - 11
1 May 2021
Skipsey DA Downing MR Ashcroft GP Cairns DA Kumar K
Full Access

Over the last decade stemless shoulder arthroplasty has become increasingly popular. However, stability of metaphyseal loading humeral components remains a concern. This study aimed to assess the stability of the Affinis stemless humeral component using Radiostereometric analysis (RSA). Patients underwent total shoulder arthroplasty via a standardised technique with a press-fit stemless humeral component and a cemented pegged glenoid. Tantalum beads were inserted into the humerus at the time of operation. RSA of the relaxed shoulder was completed at weeks 1, 6, 13, 26, 52 and 104 post-operatively. Stressed RSA with 12 newtons of abduction force was completed from week 13 onwards. ABRSA 5.0 software (Downing Imaging Limited, Aberdeen) was used to calculate humeral component migration and induced movement. 15 patients were recruited. Precision was: 0.041, 0.034, 0.086 and 0.101 mm for Superior, Medial, Posterior and Total Point Motion (TPM) respectively. The mean TPM over 2 years was 0.24 (0.30) mm, (Mean (Standard deviation)). The mean rate of migration per 3 month time period decreased from 0.45 (0.31) to 0.02 (0.01) mm over 2 years. Mean inducible movement TPM peaked at 26 weeks at 0.1 (0.08) mm, which reduced to 0.07 (0.06) mm by 104 weeks when only 3 patients had measurable inducible motion. There was no clear trend in direction of induced movement. There were no adverse events or revisions required. We conclude migration of the humeral component was low with little inducible movement in the majority of patients implying initial and 2 year stability of the stemless humeral component


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 3 - 3
1 Mar 2021
Chimutengwende-Gordon M Callary S Davidson J Costi K Pannach S Stamenkov R Howie DW Solomon LB
Full Access

Femoral impaction bone grafting (IBG) may be used to restore bone stock in revision total hip arthroplasty (THA) and allow use of a shorter, than otherwise, length prosthesis. This is most beneficial in young patients who are more likely to require further revision surgery. This study aimed to assess the results of femoral IBG for staged revision THA for infection. A prospective cohort of 29 patients who underwent staged revision THA for infection with femoral IBG and a cemented polished double-tapered (CPDT) stem at the final reconstruction was investigated. The minimum follow-up was two years (2 – 10 years, median 6 years). Stem subsidence was measured with radiostereometric analysis. Clinical outcomes were assessed with the Harris Hip, Harris Pain, and and Société Internationale de Chirurgie Orthopédique et de Traumatologie Activity (SICOT) Scores. The original infection was eradicated in 28 patients. One patient required a repeat staged revision due to re-infection with the same organism. At two-year follow-up, the median subsidence at the stem-bone interface was −1.70 mm (−0.31 to −4.98mm). The median Harris Hip Score improved from 51 pre-operatively to 80 at two years (p=0.000), the Harris Pain Score from 20 to 44 (p=0.000) and the SICOT Score from 2.5 to 3 (p=0.003). As successful eradication of infection was achieved in the majority of patients and the stem migration was similar to that of a primary CPDT stem, this study supports the use of femoral IBG during the final reconstruction of the femur after staged revision THA for infection


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 27 - 27
1 Jul 2020
Hurry J Spurway A Dunbar MJ El-Hawary R
Full Access

Radiostereometric analysis (RSA) allows for precise measurement of interbody distances on X-ray images, such as movement between a joint replacement implant and the bone. The low radiation biplanar EOS imager (EOS imaging, France) scans patients in a weight-bearing position, provides calibrated three-dimensional information on bony anatomy, and could limit the radiation during serial RSA studies. Following the ISO-16087 standard, 15 double exams were conducted to determine the RSA precision of total knee arthroplasty (TKA) patients in the EOS imager, compared to the standard instantaneous, cone-beam, uniplanar digital X-ray set-up. At a mean of 5 years post-surgery, 15 TKA participants (mean 67 years, 12 female, 3 male) were imaged twice in the biplanar imager. To reduce motion during the scan, a support for the foot was added and the scan speed was increased. The voltage was also increased compared to standard settings for better marker visibility over the implant. A small calibration object was included to remove any remaining sway in post-processing. The 95% confidence interval precision was 0.11, 0.04, and 0.15 mm in the x, y, and z planes, respectively and 0.15, 0.20, and 0.14° in Rx, Ry, and Rz. Two participants had motion artifacts successfully removed during post-processing using the small calibration object. With faster speeds and stabilization support, this study found an in vivo RSA precision of ≤ 0.15 mm and ≤ 0.20° for TKA exams, which is within published uniplanar values for arthroplasty RSA. The biplanar imager also adds the benefits of weight bearing imaging, 3D alignment measurements, a lower radiation dose, and does not require a reference object due to known system geometry and automatic image registration