Aims. Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls. Methods. We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left
Aims. The aim of this study was to assess the ability of morphological spinal parameters to predict the outcome of bracing in patients with adolescent idiopathic scoliosis (AIS) and to establish a novel supine correction index (SCI) for guiding bracing treatment. Methods. Patients with AIS to be treated by bracing were prospectively recruited between December 2016 and 2018, and were followed until brace removal. In all, 207 patients with a mean age at recruitment of 12.8 years (SD 1.2) were enrolled. Cobb angles, supine flexibility, and the rate of in-brace correction were measured and used to predict curve progression at the end of follow-up. The SCI was defined as the ratio between correction rate and flexibility. Receiver operating characteristic (ROC) curve analysis was carried out to assess the optimal thresholds for flexibility, correction rate, and SCI in predicting a higher risk of progression, defined by a change in Cobb angle of ≥ 5° or the need for surgery. Results. The baseline Cobb angles were similar (p = 0.374) in patients whose curves progressed (32.7° (SD 10.7)) and in those whose curves remained stable (31.4° (SD 6.1)). High supine flexibility (odds ratio (OR) 0.947 (95% CI 0.910 to 0.984); p = 0.006) and correction rate (OR 0.926 (95% CI 0.890 to 0.964); p < 0.001) predicted a lower incidence of progression after adjusting for Cobb angle, Risser sign, curve type, menarche status, distal
Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm
Aims. The aim of this study was to investigate whether including the stages of ulnar physeal closure in Sanders stage 7 aids in a more accurate assessment for brace weaning in patients with adolescent idiopathic scoliosis (AIS). Methods. This was a retrospective analysis of patients who were weaned from their brace and reviewed between June 2016 and December 2018. Patients who weaned from their brace at Risser stage ≥ 4, had static standing height and arm span for at least six months, and were ≥ two years post-menarche were included. Skeletal maturity at weaning was assessed using Sanders staging with stage 7 subclassified into 7a, in which all phalangeal physes are fused and only the distal radial physis is open, with narrowing of the medial physeal plate of the distal ulna, and 7b, in which fusion of > 50% of the medial growth plate of distal ulna exists, as well as the distal
To systematically evaluate whether bracing can effectively achieve curve regression in patients with adolescent idiopathic scoliosis (AIS), and to identify any predictors of curve regression after bracing. Two independent reviewers performed a comprehensive literature search in PubMed, Ovid, Web of Science, Scopus, and Cochrane Library to obtain all published information about the effectiveness of bracing in achieving curve regression in AIS patients. Search terms included “brace treatment” or “bracing,” “idiopathic scoliosis,” and “curve regression” or “curve reduction.” Inclusion criteria were studies recruiting patients with AIS undergoing brace treatment and one of the study outcomes must be curve regression or reduction, defined as > 5° reduction in coronal Cobb angle of a major curve upon bracing completion. Exclusion criteria were studies including non-AIS patients, studies not reporting p-value or confidence interval, animal studies, case reports, case series, and systematic reviews. The GRADE approach to assessing quality of evidence was used to evaluate each publication.Aims
Methods
School of Mechanical Engineering, University of Birmingham, Birmingham, UK. This study investigated the effects on friction of changing the dimensions of a ball-and-socket Total Disc Arthroplasty (TDA). A generic ball-and-socket model was designed and manufactured based on the dimensions and geometry of a metal-on-metal Maverick (Medtronic, Minneapolis, USA) device. Keeping the radial clearance similar to the Maverick, the ball and socket dimensions varied between 10 to 16 mm and 10.015 to 16.015 mm, respectively, in order to enable the comparison between different dimensions. The implants were made out of Cobalt Chrome Molybdenum alloy, with a surface roughness of 0.05 μm. A Bose spine simulator (Bose Corporation, ElectroForce Systems Group, Minnesota, USA) was used to apply an axial compressive force to the TDA. Axial rotation of ±2° was then applied at various frequencies and the resulting frictional torque measured. The tests were performed under an axial load of 50, 600 and 1200 N and frequencies of 0.5, 1.0, 1.5 and 2.0 Hz, for four different samples of radii 10, 12, 14 and 16 mm (48 combinations in total). The results showed variation of frictional torque in different frequencies for all four samples under constant axial load. It was observed that the frictional torque had the lowest value for the implant with ball
Introduction. Adolescent idiopathic scoliosis (AIS) is associated with low bone mineral density, which could be related to its etiopathogenesis. Apart from bone density, bone micro-architectures are equally important for better understanding of disease initiation and progression in AIS. Quantitative assessment of bone quality is hampered by the invasive nature of investigations, until recently when the high-resolution pQCT (XtremeCT) became available for revolutionary in-vivo microimaging and derivation of bone micro-architectural parameters. Our objective was to use this powerful instrument to study bone qualities in AIS and compare findings with those from healthy controls. Methods. 48 girls with AIS and 84 sex-matched healthy controls were recruited. Cobb angle was measured with standing radiographs, and imaging of the non-dominant distal
Introduction. Spinopelvic parameters describe the orientation, shape, and morphology of the spine and pelvis. In children without spinal deformity, these parameters change during the first 10 years of life; however, spinopelvic parameters need to be defined in children with significant early-onset scoliosis (EOS). The purpose of this study is to examine the effects of EOS on sagittal spinopelvic alignment. We hypothesise that sagittal spinopelvic parameters for patients with EOS will differ from age-matched children without spinal deformity. These values will act as a baseline for future studies and may predict postoperative complications such as proximal junctional kyphosis and implant failure in children being treated with growing systems. Methods. Standing, lateral radiographs of 82 untreated patients with EOS with Cobb angle greater than 50° were evaluated. Sagittal spine parameters (sagittal balance, thoracic kyphosis [TK], lumbar lordosis [LL]) and sagittal pelvic parameters (pelvic incidence [PI], pelvic tilt [PT], sacral slope [SS], and modified pelvic
Introduction. Spinopelvic parameters describe the orientation, shape, and morphology of the spine and pelvis. These parameters change during the first 10 years of life in children without spinal deformity; however, spinopelvic parameters have yet to be defined in children with significant early-onset scoliosis (EOS). Sagittal plane alignment could affect the natural history and outcome of interventions for EOS. As a result, spinopelvic parameters are being defined for this population. On the basis of the landmarks used for measurement of these parameters, there may be inherent error in performing these measurements on the immature pelvis. The purpose of this study is to define the variability associatedwith the measurement of spinopelvic parameters in children with EOS. Methods. Standing, lateral radiographs of 11 patients with untreated EOS were evaluated. Sagittal spinopelvic parameters (pelvic incidence [PI], pelvic tilt [PT], sacral slope [SS], and modified pelvic
Fractures of the odontoid peg are common spinal
injuries in the elderly. This study compares the survivorship of
a cohort of elderly patients with an isolated fracture of the odontoid
peg A total of 32 patients with an isolated odontoid fracture were
identified. The rate of mortality was 37.5% (n = 12) at one year.
The period of greatest mortality was within the first 12 weeks.
Time made a lesser contribution from then to one year, and there
was no impact of time on the rate of mortality thereafter. The rate
of mortality at one year was 41.2% for male patients (7 of 17) compared
with 33.3% for females (5 of 15). The rate of mortality at one year was 32% (225 of 702) for patients
with a fracture of the hip and 4% (9 of 221) for those with a fracture
of the wrist. There was no statistically significant difference
in the rate of mortality following a hip fracture and an odontoid
peg fracture (p = 0.95). However, the survivorship of the wrist
fracture group was much better than that of the odontoid peg fracture
group (p <
0.001). Thus, a fracture of the odontoid peg in the
elderly is not a benign injury and is associated with a high rate
of mortality, especially in the first three months after the injury. Cite this article:
The purpose of this study was to determine whether
it would be feasible to use oblique lumbar interbody fixation for
patients with degenerative lumbar disease who required a fusion
but did not have a spondylolisthesis. A series of CT digital images from 60 patients with abdominal
disease were reconstructed in three dimensions (3D) using Mimics
v10.01: a digital cylinder was superimposed on the reconstructed
image to simulate the position of an interbody screw. The optimal
entry point of the screw and measurements of its trajectory were
recorded. Next, 26 cadaveric specimens were subjected to oblique
lumbar interbody fixation on the basis of the measurements derived
from the imaging studies. These were then compared with measurements
derived directly from the cadaveric vertebrae. Our study suggested that it is easy to insert the screws for
L1/2, L2/3 and L3/4 fixation: there was no significant difference
in measurements between those of the 3-D digital images and the
cadaveric specimens. For L4/5 fixation, part of L5 inferior articular
process had to be removed to achieve the optimal trajectory of the
screw. For L5/S1 fixation, the screw heads were blocked by iliac
bone: consequently, the interior oblique angle of the cadaveric specimens
was less than that seen in the 3D digital images. We suggest that CT scans should be carried out pre-operatively
if this procedure is to be adopted in clinical practice. This will
assist in determining the feasibility of the procedure and will
provide accurate information to assist introduction of the screws. Cite this article: