Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:

Long femoral nails for neck of femur fractures and prophylactic fixation have a risk of anterior cortex perforation. Previous studies have demonstrated the radius of curvature (ROC) of a femoral nail influencing the finishing point of a nail and the risk of anterior cortex perforation. This study aims to calculate a patients femoral ROC using preoperative XR and CT and therefore nail finishing position. We conducted a retrospective study review of patients with long femoral cephalomedullary nailing for proximal femur fractures (OTA/AO 31(A) and OTA/AO 32) or impending pathological fractures at a level 1 trauma centre between January 1, 2015 and December 31, 2020 with both full length lateral X-ray and CT imaging. Femoral ROC was calculated on both imaging modalities. Outcomes measured including nail finishing position, anterior cortex encroachment and impingement. The mean femoral ROC was 1026mm on CT and 1244mm on XR. CT femoral ROC strongly correlated with nail finishing point with a spearmans coefficient of 0.77. Additionally, femurs with a ROC <1000mm were associated with a higher risk of anterior encroachment (OR 6.12) and femurs with a ROC <900mm were associated with a higher risk of anterior cortex impingement (OR 6.47). To our knowledge this is the first study to compare a measured femoral ROC to nail finishing position. The use of CT to measure femoral ROC and to a lesser extent XR was able to predict both nail finishing position and risk of anterior cortex encroachment. Preoperative XRs and CTs were able to identify patients with a small femoral ROC. This predicted patients at risk of anterior cortex impingement, anterior cortex encroachment and nail finishing position. We may be able to select femoral nails that resemble the native femoral ROC and mitigate the risk of anterior cortex perforation


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 22 - 22
1 Dec 2022
Parker E AlAnazi M Hurry J El-Hawary R
Full Access

Clinically significant proximal junctional kyphosis (PJK) occurs in 20% of children treated with posterior distraction-based growth friendly surgery. In an effort to identify modifiable risk factors, it has been theorized biomechanically that low radius of curvature (ROC) implants (i.e., more curved rods) may increase post-operative thoracic kyphosis, and thus may pose a higher risk of developing PJK. We sought to test the hypothesis that EOS patients treated with low ROC (more curved rods) distraction-based treatment will have a greater risk of developing PJK as compared to those treated with high ROC (straighter) implants. This is a retrospective review of prospectively collected data obtained from a multi-centre EOS database on children treated with rib-based distraction with minimum 2-year follow-up. Variables of interest included: implant ROC at index (220 mm or 500 mm), patient age, pre-operative scoliosis, pre-operative kyphosis, and scoliosis etiology. In the literature, PJK has been defined as clinically significant if revision surgery with superior extension of the upper instrumented vertebrae was performed. In 148 scoliosis patients, there was a higher risk of clinically significant PJK with low ROC (more curved) rods (OR: 2.6 (95%CI 1.09-5.99), χ2 (1, n=148) = 4.8, p = 0.03). Patients had a mean pre-operative age of 5.3 years (4.6y 220 mm vs 6.2y 500 mm, p = 0.002). A logistic regression model was created with age as a confounding variable, but it was determined to be not significant (p = 0.6). Scoliosis etiologies included 52 neuromuscular, 52 congenital, 27 idiopathic, 17 syndromic with no significant differences in PJK risk between etiologies (p = 0.07). Overall, patients had pre-op scoliosis of 69° (67° 220mm vs 72° 500mm, p = 0.2), and kyphosis of 48° (45° 220mm vs 51° 500mm, p = 0.1). The change in thoracic kyphosis pre-operatively to final follow up (mean 4.0 ± 0.2 years) was higher in patients treated with 220 mm implants compared to 500 mm implants (220 mm: 7.5 ± 2.6° vs 500 mm: −4.0 ± 3.0°, p = 0.004). Use of low ROC (more curved) posterior distraction implants is associated with a significantly greater increase in thoracic kyphosis which likely led to a higher risk of developing clinically-significant PJK in EOS patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 45 - 45
1 Jan 2016
Hirokawa S Hagihara S Fukunaga M
Full Access

1. Introduction. Such a Total Knee Arthroplasty (TKA) that is capable of making high knee flexion has been long awaited for the Asian and Muslim people. Our research group has developed the TKA possible to attain complete deep knee flexion such as seiza sitting. Yet as seiza is peculiar to the Japanese, other strategies will be necessary for our TKA to be on the overseas market. Still it is impractical to prepare many kinds of modifications of our TKA to meet various demands from every country/region. To this end, we contrived a way to modularize the post-cum alignment of our TKA in order to facilitate the following three activities containing high knee flexion: praying for the Muslim, gardening or golfing for the Westerner, sedentary siting on a floor for the Asian. We performed simulation and experiment, such as a mathematical model analysis, FEM analysis and a cadaveric study, thereby determining the optimal combination of moduli for the above activities respectively. 2. Methods. We modularized the post-cum alignment by three parameters in three levels respectively (Fig.1). The shape of the post's sagittal section and the total shape of cum were unchanged. The three parameters for modularization were the post location which was shifted anterior and posterior by 5 mm from the neutral position, the post inclination which was inclined forward and backward by 5° from the vertical, and the radius of curvature of the post's horizontal section which was increased and decreased by 2 mm from the original value. It is crucial to decrease contact stress between the post and cum during praying for the Muslim and during gardening or golfing for the Westerner, which would be realized by choosing the optimal location and inclination of post when kneeling for the Muslim and when squatting for the Westerner respectively (Fig.2). As for the Asian, it is desirable for them to perform various kinds of sedentary sittings on a floor without difficulties, which would be facilitated by choosing the optimal radius of curvature value to increase range of rotation when the knee is in high-flexion (Fig.2). First we performed a mathematical model analysis to introduce the kinetic data during sit-to-stand activities. Then by using the above kinetic data we performed the FEM analysis to determine the contact stress between the post and cum during praying, gardening or golfing. Finally we carried out the cadaveric study to determine the range of rotation at high flexion of the knee. 3. Results and Discussion. The results of FEM analysis demonstrated that the best modular set for the activities for Muslim and Westerners were so that the post location should be shifted by 5 mm and the post inclination should not be applied (Fig.3). The results of cadaveric study demonstrated that the radius of horizontal curvature should be increased by 2mm so as to increase the range of rotation especially when the knee is in high flexion. The subjects for our future study are to verify the validities of the above results through our simulator tests


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 114 - 114
1 Dec 2013
Larsen B Jacofsky M Jacofsky D Onstot B
Full Access

Introduction:. This study evaluates the impact of radii-related differences in posterior cruciate ligament retaining (PCR) primary total knee arthroplasty (TKA) prosthetic designs on knee biomechanics during level walking 1-year after surgery. The multi-radius (MR) design creates at least two instantaneous flexion axes by changing the radius of curvature of the femoral component throughout the arc of knee motion. The femoral component of the single-radius (SR) design has only one radius and therefore a fixed axis. Methods:. Subjects scheduled for computer-navigated TKA (n = 37: SR n = 20 [9M, 11F], MR n = 17 [8M, 9F]; 69.8 ± 7.1 years, 87.6 ± 20.8 kg, 1.68 ± 0.09 m), and demographic-matched controls without knee pathology n = 23 [13M, 10F], provided informed consent under the Banner IRB (Sun Health panel). All surgical subjects received similar pre-, peri-, and post-operative care under the direction of three surgeons from a single orthopedic practice. Position and force data were collected using 28 reflective markers (modified Helen Hayes [Kadaba et al 1990]) tracked by ten digital IR cameras (120 Hz) (Motion Analysis Corp., Santa Rosa, CA) and four force platforms (1200 Hz) (AMTI, Watertown, MA) embedded in an 8m walkway. Data were recorded and smoothed (Butterworth filter, 6 Hz) using EVaRT 5.0.4 software (Motion Analysis Corp.). Gait cycle parameters were calculated using the ‘Functional Hip Center’ and ‘Original Knee Axis’ models in Orthotrak 6.6.1 (Motion Analysis Corp.). Data from each group were height and weight normalized and ensemble averaged by affected limb (right limb for controls) using custom code written in Labview (National Instruments Corp, Austin, TX). Descriptive statistics for the maximum and minimum knee kinematic, kinetic, and temporal spatial values in the stance and swing phases of the gait cycle were generated for each group. Between-group comparisons were made using an ANOVA with post hoc testing as appropriate (SPSS 14.0 (SPSS Inc, Chicago, IL)). Results:. Total range of motion was similar between surgical groups but MR was 5° more extended than SR throughout stance (p < 0.05) (Figure 1). MR knee power absorption (Figure 2) and medial knee force were less than controls (p < 0.05). SR and controls were similar for several knee parameters (p > 0.05) (Table 1). Discussion:. The performance of the SR design was more control-like in several parameters at one year. A shifting radius of curvature, which alters patella-femoral moment arm geometry and resulting quadriceps force [D'Lima et al 2001], may contribute to reduced knee power in the MR group. The fluctuating radius of curvature may also generate collateral ligament laxity with increasing flexion angles [Wang et al 2005, Whiteside et al 1989] contributing to the observed deficit in medial knee forces. The increased knee extension angles in the MR group are indicative of a stabilizing adaptation throughout the range of motion. While previous biomechanics studies following TKA have revealed few to no significant differences in gait performance due to implant design, the use of computer navigation and standard order sets, which control for alignment and other confounding variables, may generate tighter data sets that reveal differences masked by variation within surgical groups rather than between them


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 87 - 87
1 Sep 2012
Alolabi B Studer A Gray A Ferreira LM King GJ Athwal GS
Full Access

Purpose. There have been a number of described techniques for sizing the diameter of radial head implants. All of these techniques, however, are dependent on measurements of the excised native radial head. When accurate sizing is not possible due to extensive comminution or due to a previous radial head excision, it has been postulated that the proximal radioulnar joint (PRUJ) may be used as an intraoperative landmark for correct sizing. The purpose of this study was to: 1) determine if the PRUJ could be used as a reliable landmark for radial head implant diameter sizing when the native radial head in unavailable, and (2) determine the reliability of measurements of the excised radial head. Method. Twenty-seven fresh-frozen denuded ulnae and their corresponding radial heads (18 males, 9 females) were examined. The maximum diameter (MaxD), minimum diameter (MinD) and dish diameter (DD) of the radial heads were measured twice, 3–5 weeks apart, using digital calipers. Two fellowship-trained upper extremity surgeons, an upper extremity fellow and a senior orthopedic resident were then asked to independently select a radial head implant diameter based on the congruency of the radius of curvature of the PRUJ to that of the radial head trial implants. The examiners were blinded to the native radial head dimensions. This selection was repeated 3–5 weeks later by two of the investigators. Correlation between radial head measurements and radial head implant diameter sizes was assessed using Pearsons correlation coefficient (PCC) and inter and intra-observer reliability were assessed using intra-class correlation coefficient (ICC). Results. There was a positive correlation between each of the radial head measurements (MaxD, MinD and DD) and the selected radial head implant diameters (PCC of 0.56, 0.59 and 0.51 respectively; p<0.01). Measuring the MaxD, MinD and DD of the radial head showed excellent inter-observer reliability (ICC of 0.99, 1.00 and 0.82 respectively) and excellent intra-observer reliability (ICC of 0.99, 0.98 and 0.75 respectively). The PRUJ sizing method used to determine the diameter of the radial head implant showed poor inter-observer reliability with an ICC of 0.34 but good intra-observer reliability (ICC = 0.76). Conclusion. Measurements of the diameter of the excised radial head showed excellent intra and inter-observer reliability suggesting that the excised radial head, when available, should be used to select the radial head implant diameter. The inter-observer reliability of using the PRUJ for sizing the diameter of radial head implants was poor, indicating that this method is an unreliable technique for radial head implant diameter sizing. However, the high intra-observer reliability of the PRUJ method indicates that an observer tends to make the same size estimation, even weeks apart. This study suggests that the PRUJ radius of curvature may be different than that of the radial head. Further studies are needed to verify this hypothesis


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 2 - 2
1 Mar 2021
Changoor A Suderman R Alshaygy I Fuhrmann A Akens M Safir O Grynpas M Kuzyk P
Full Access

Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively. Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and toughness. MFCs were fixed in 70% ethanol, processed undecalcified, and polished sections, approximately 70 µm thick (Exakt Micro Grinding system) were carbon-coated. Backscattered electron images were collected on a scanning electron microscope (Hitachi SU3500) at 5 kV and working distance of 5 mm. Bone in-growth within the porous coating was quantified using software (ImageJ). Statistical comparisons were made using a two-way ANOVA and Fisher's LSD post-hoc test (Statistica v.8). Biomechanical evaluation of the bone-implant interface revealed that by 16 weeks, Gription-coated implants exhibited higher force (2455±1362 N vs. 1002±1466 N, p=0.046) and stress (12.60±6.99 MPa vs. 5.14±7.53 MPa, p=0.046) at failure, and trended towards higher stiffness (11510±7645 N/mm vs. 5010±8374 N/mm, p=.061) and modulus of elasticity (591±392 MPa vs. 256±431 MPa, p=0.61). Similarly, by 16 weeks, bone in-growth in Gription-coated implants was approximately double that measured in Porocoat (6.73±3.86 % vs. 3.22±1.52 %, p=0.045). No statistically significant differences were detected at either 4 nor 8 weeks, however, qualitative observations of the exposed bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. High variability is attributed to implant placement, resulting from the small visual window afforded during surgery, unique curvatures of the condyles, and presence of the extensor digitorum longus tendon which limited access to the LFC. Ultra-porous titanium coatings, know commercially as Gription and Porocoat, were compared for the first time in a challenging intra-articular ovine model. Gription provided superior fixation strength and bone in-growth, suggesting it may be beneficial in hip replacement surgeries where bone stock quality and quantity may be compromised


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 45 - 45
1 Jul 2020
Langohr G DeDecker S Khayat A Johnson J King GJ Medley J
Full Access

Joint hemiarthroplasty replaces one side of a synovial joint and is a viable alternative to total joint arthroplasty when one side of the joint remains healthy. Most hemiarthroplasty implants used in current clinical practice are made from stiff materials such as cobalt chrome or ceramic. The substitution of one side of a soft cartilage-on-cartilage articulation with a rigid implant often leads to damage of the opposing articular cartilage due to the resulting reductions in contact area and increases in cartilage stress. The improvement of post-operative hemiarthroplasty articular contact mechanics is of importance in advancing the performance and longevity of hemiarthroplasty. The purpose of the present study was to investigate the effect of hemiarthroplasty surface compliance on early in-vitro cartilage wear and joint contact mechanics. Cartilage wear tests were conducted using a six-station pin-on-plate apparatus. Pins were manufactured to have a hemispherical radius of curvature of 4.7 mm using either Bionate (DSM Biomedical) having varying compliances (80A [E=20MPa], 55D [E=35MPa], 75D [E=222MPa], n=6 for each), or ceramic (E=310GPa, n=5). Cartilage plugs were cored from fresh unfrozen bovine knee joints using a 20 mm hole saw and mounted in lubricant-containing chambers, with alpha calf serum diluted with phosphate buffer solution to a protein concentration of 17 g/L. The pins were loaded to 30N and given a stroke length of 10 mm for a total of 50,000 cycles at 1.2 Hz. Volumetric cartilage wear was assessed by comparing three-dimensional cartilage scans before and during wear testing. A two-way ANOVA was used for statistical analysis. To assess hemiarthroplasty joint contact mechanics, 3D finite element modelling (ABAQUS v6.12) was used to replicate the wear testing conditions. Cartilage was modeled using neo-Hookean hyper-elastic material properties. Contact area and peak contact stress were estimated. The more compliant Bionate 80A and 55D pins produced significantly less volumetric cartilage wear compared with the less compliant Bionate 75D and ceramic pins (p 0.05). In terms of joint contact mechanics, the more compliant materials (Bionate 80A and 55D) had significantly lower maximum contact stress levels compared to the less compliant Bionate 75D and ceramic pins (p < 0 .05). The results of this study show a relationship between hemiarthroplasty implant surface compliance and early in vitro cartilage wear, where the more compliant surfaces produced significantly lower amounts of cartilage wear. The results of the joint contact mechanics analysis showed that the more compliant hemiarthroplasty materials produced lower maximum cartilage contact stresses than the less compliant materials, likely related to the differences in wear observed. More compliant hemiarthroplasty surfaces may have the potential to improve post-operative cartilage contact mechanics by increasing the implant-cartilage contact area while reducing peak contact stress at the implant-cartilage interface, however, such materials must be resistant to surface fatigue and longer-term cartilage wear/damage must be assessed


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 77 - 77
1 Feb 2020
Ramirez-Martinez I Smith S Trail I Joyce T
Full Access

Introduction. Despite the positive outcomes in shoulder joint replacements in the last two decades, polyethylene wear debris in metal-on-polyethylene artificial shoulder joints is well-known as a limitation in the long-term survival of shoulder arthroplasties systems. Consequently, there is an interest in the use of novel materials as an alternative to hard bearing surfaces such as pyrolytic carbon layer (PyroCarbon). Materials and Methods. In the present study, the unique Newcastle Shoulder Wear Simulator was used (Smith et al., 2015; Smith et al., 2016) to evaluate the wear behavior of four commercially available PyroCarbon humeral heads 43 mm diameter, articulating against conventional ultra-high molecular weight polyethylene (UHMWPE) glenoid inserts with a radius of curvature of 17.5 mm to form an anatomic total shoulder arthroplasty. A physiological combined cycled “Repeat-motion-load” (RML) (Ramirez-Martinez et al., 2019) obtained from the typical activities of daily life of patients with shoulder implants was applied as a simulator input. A fifth sample of the same size and design was used as a soak control and subjected to dynamic loading without motion during the wear test. The mean volumetric wear rate of PyroCarbon-on-polyethylene was evaluated over 5 million cycles gravimetrically and calculated on the basis of linear regression, as well as the change in surface roughness (S. a. ) of the components using a non-contacting white light profilometer throughout the test. Results. The gravimetric analysis showed a mean volumetric wear rate and standard deviation of 19.3±9.5 mm. 3. /million cycles for the UHMWPE glenoid inserts, whereas PyroCarbon humeral head counterparts did not exhibit a loss in mass throughout the test. The roughness values of the UHMWPE glenoid inserts decreased (P < .001), changing from 296±28 nm to 32±8 nm at the end of the test. In contrast, the PyroCarbon humeral heads did not show a significant change (P = .855) over the 5 million cycles; remained in the same range (21±2 nm to 20±10 nm) with no evidence of wear damage on the surface. Conclusions. This is the first in-vitro shoulder simulator study of a PyroCarbon on UHMWPE articulation. Wear rates were similar to that found to well-proven metal on UHMWPE shoulder arthroplasties. While it was interesting to see that the PyroCarbon did not roughen over the test duration, the lack of an appreciable reduction in wear of the UHMWPE component when articulated with an expensive and complex to manufacture PyroCarbon component likely means there is little clinical cost-benefit in the use of a PyroCarbon on UHMWPE shoulder implant. Declaration of competing interest. Prof. Ian A. Trail received some royalties and research support from Wright Medical Group N.V. None of the other authors, their immediate families, and any research foundation with which they are affiliated did not receive any financial payments or other benefits from any commercial entity related to the subject of this article. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 96 - 96
1 Jun 2018
Nam D
Full Access

Prior implant designs have relied on a four-bar link theory and featured J-curve femoral components intended to recreate femoral rollback of the native knee, but this design could lead to anterior femoral sliding or paradoxical motion. Recent kinematic analyses of the native human knee have shown the medial compartment to be more stable to anteroposterior translation than the lateral, resulting in a “medial pivot” motion as the knee flexes. “Medial pivot” designs in total knee arthroplasty were introduced in the 1990s to attempt to re-create this motion. They consist of an asymmetric tibial insert with a highly congruent medial compartment and less conforming lateral compartment. The femoral component has a single radius of curvature and a high degree of conformity. In vivo fluoroscopic studies have shown medial pivot designs to be successful in achieving its intended motion, while other cruciate-retaining designs had a higher incidence of paradoxical anterior translation and lateral condylar lift-off. Furthermore, numerous investigations have shown medial pivot designs to have excellent outcomes and survivorship at up to 10 years post-operatively. However, the contention in this debate that medial pivot designs avoid the need for ligament balancing is incorrect. Appropriate ligament balancing remains a crucial aspect of any successful total knee arthroplasty and is no less important based on the implant design utilised. In the Methods section of all prior reports using a medial pivot design, the authors have noted that appropriate ligament balancing was obtained both in flexion and extension consistent with the recommended technique with other primary TKA implant designs. From a kinematic standpoint, this makes absolute sense. If a patient has a valgus imbalance with loose medial structures, then as the knee is brought into flexion the femur will not maintain congruency and contact with the conforming tibial surface – thus the medial pivot motion will be lost. Thus, balancing remains critical. Lastly, although not the focal point of this debate, whether re-creation of a medial pivot motion in total knee arthroplasty actually improves patient outcomes remains an area of debate. A recent investigation by Warth and Meneghini, et al. demonstrated that re-creation of a medial-pivot pattern intra-operatively did not correlate with patient-reported outcomes at 1-year post-operatively. Thus, although the concept of a medial pivot design has merit, whether this will consistently improve outcomes and patient satisfaction remains to be seen


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 23 - 23
1 Nov 2016
Iannotti J
Full Access

Humeral head size is defined by the radius of curvature and the thickness of the articular segment. This ratio of radius to thickness is within a narrow range with an average of 0.71. The articular surface of the normal humeral head measured within the AP plane is defined by three landmarks on the non-articular surface of the proximal humerus. The perfect circle concept can be applied for assessment of the anatomic reconstruction of the post-operative x-rays and more importantly can be used intra-operatively as a guide when choosing the proper prosthetic humeral head component. The humeral head is an elliptical shape with its AP dimension being approximately 2 mm less than the SI dimension. This shape contributes to the roll and translation of the normal shoulder but is not replicated by the spherical shape of the prosthetic humeral head. The glenoid vault has a consistent 3D shape and use of the vault model within 3D planning software can define the patient's pre-morbid anatomy, specifically the location of the joint line and patient specific version and inclination. Use of this tool can assist the surgeon in defining the optimal implant and its location. In patients with little or no bone loss, a symmetric glenoid implant is often ideal for resurfacing. When there is asymmetric bone loss, often seen posteriorly with osteoarthritis, an asymmetric posteriorly augmented component can improve the ability to correct the deformity while maintaining the native joint line. It is suggested that these augmented implants in selected patients will help restore and maintain humeral alignment and lessen the risk for residual posterior humeral head subluxation and eccentric loading of the glenoid component


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 26 - 26
1 May 2015
Tucker D Surup T Petersik A Kelly M
Full Access

Anterior positioning of a cephomedullary nail in the distal femur occurs in up to 88% of cases. This is considered to occur because of a mismatch between the radius of curvature of the femur and that of available implants. The hypothesis for this study was that the relative thicknesses of the cortices of the femur (referenced off the linea aspera) change with age and determine the final position of intramedullary implants. This study used the data from CT scans undertaken as part of routine clinical practice in 919 patients with intact left femora (median age 66 years, 484 male and 435 female). The linea aspera and transverse intervals were plotted on a template femur between 25% – 60% femoral bone length (5% increments) and mapped automatically to all individual femora in the database with measurements taken in the plane of the linea aspera. The linea aspera was found to be internally rotated as compared to the sagittal plane referenced off the posterior femoral condyles. An age related change in the posterior/anterior cortical thickness ratio was demonstrated. The >80 year old cohort shows a significantly disproportional posterior/anterior ratio increase of 70.0% from 25–50% bone length as compared to 48.1% for the <40 year old cohort (p<0.05). This study has shown that assessment in the sagittal plane may be inaccurate because of rotational changes in the linea aspera. The centering influence of the corticies is lost with age with a relative thinning of the anterior cortex and thickening of the posterior cortex moving distally in the femur. This has a direct influence on the positioning of intramedullary implants explaining the preponderance of anterior malpositioning of intramedullary implants in the elderly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 90 - 90
1 Mar 2017
Wellman S Queen R
Full Access

Introduction. Mid-flexion stability after total knee arthroplasty (TKA) is dependent, in large part, on implant design. Design variables include retention or sacrifice of the posterior cruciate ligament, conformity of the polyethylene tibial surface, and radius of curvature of the femoral component. In this study, we attempted to isolate the impact of femoral component design by comparing a single-radius design (SR) to a J-Curve design (JC). We selected cruciate-retaining implants to eliminate the effect of a cam-and-post mechanism. Mid-flexion performance these two designs were compared using the Lower-Quarter Y-Balance Test (YBT-LQ), as well as patient reported outcomes and measures of physical performance. The YBT-LQ is a simple functional test of unilateral lower extremity strength and balance. Reach of the contralateral limb is measured in three different directions (Figures 1–3). Our hypothesis was that the SR design would provide superior mid-flexion stability, and therefore, a greater reach distance in the YBT-LQ when compared to the JC group. Methods. Patients undergoing primary, unilateral TKA were prospectively enrolled and block randomized to receive either the SR (n=30) or JC (n=30) implant. All surgeries were performed by one surgeon using a gap-balancing technique with a cruciate-retaining implant design. Patients completed outcome measures (KOOS, KSS, UCLA Activity), performed the YBT-LQ, and completed physical performance measures (walking speed, timed up-and-go, sit-to-stand) before surgery and 1 year postoperatively. A series of 2×2 repeated measures ANOVAS (Implant group x Time) were completed. Results. One year post-operatively, 40 patients (20 SR, 20 JC) were available for analysis. The groups were closely matched for age, gender, BMI, and ASA score. No significant differences existed between implant groups for the YBT-LQ or any other variable of interest. Significant improvements in both implant groups were observed for all variables of interest when comparing pre-operative to one year post-operative. Conclusions. Both groups improved significantly across time in all measures, but no differences were seen between SR and JC designs. Based on reach distances achieved, it is probable that many patients were not able to achieve mid-flexion during the YBT-LQ test. With regards to mid-flexion function after TKA, the significant limitations in strength and balance in this cohort of patients likely outweigh any subtle differences in implant design. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 44 - 44
1 Feb 2017
Bischoff J Brownhill S Snyder S Rippstein P Philbin T Coetzee J
Full Access

Introduction/Purpose. Total ankle replacement (TAR) success has improved since first-generation implants, but patient satisfaction continues to be less than knee and hip replacements. Little is known about variations in distal tibia anatomy between genders and across ethnicities; therefore it is unclear the extent to which current TAR prostheses accommodate variability in patient size and shape. This study quantified distal tibia morphometrics relevant to TAR design, and assessed differences between ethnicities and genders. The hypotheses were: (1) The anterior-posterior (AP) location of the dwell point of the tibia is centralized; (2) The sagittal radius of curvature of the tibial articulation increases with bone size; (3) Differences in dwell point location or sagittal radii between genders and ethnicities can be attributed to size differences between those populations. Methods. Tibial CT scans were obtained from cadavers or individuals of various ethnicities (Table 1). Landmarks were defined on digital models created from the scans, including medial and lateral edges of the distal tibial articulation (Figure 1a), and sagittal contours of the articulation (Figure 1b). The articulation center was defined as the average center point of all contours (Figure 1c). The AP center and AP length at the level of a distal tibial resection for TAR were determined, and the AP offset of the articulation center was calculated (Figure 1c). Differences in metrics for each ethnic and gender group were determined using a one-way Anova (P<.05) with Tukey's method for differentiating groups. Regression fits of AP offset, average medial radius, and average lateral radius were determined. Utilizing AP length as a covariate, ANCOVA was utilized to assess differences in AP offset and sagittal radii between gender and ethnic groups (P<.05). Results. Descriptive statistics for AP length, AP offset, and medial/lateral radii are shown in Table 1, with Tukey groupings assigned. The relationship between medial and lateral radius was not consistent across all groups. AP length was a significant covariate for medial and lateral radii, but not AP offset. The relationship between lateral radius and AP length was significantly impacted by ethnicity (P<.001), but not by gender (P=.067) (Figure 2a). Medial radius versus AP length was significantly impacted by both ethnicity (P=.01) and gender (P<.03) (Figure 2b). Conclusion. This study illustrates for the first time the complexity of anatomical variation of the distal tibia across ethnic groups and between genders. The location of the articulation center is invariant to tibia size across each ethnicity. Medial and lateral sagittal radii generally increase with bone size, but the relative radii of the medial and lateral compartments are not consistent across ethnicities. These results highlight the need for increased anatomic understanding of the distal tibia, and implications on TAR design and technique


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 54 - 54
1 Mar 2017
Nguyen T Amundsen S Choi D Koch C Wright T Padgett D
Full Access

Introduction. Contemporary total knee systems accommodate for differential sizing between femoral and tibial components to allow surgeons to control soft tissue balancing and optimize rotation. One method some manufacturers use to allow differential sizing involves maintaining coronal articular congruency with a single radius of curvature throughout sizes while clipping the medial-lateral width, called a single coronal geometry system. Registry data show a 20% higher revision rate when the tibial component is smaller than the femur (downsizing) in the DePuy PFC system, a single coronal system, possibly from increased stresses from edge loading or varying articular congruency. We examined a different single coronal geometry knee system, Smith & Nephew Genesis II, to determine if edge loading is present in downsized tibial components by measuring area and location of deviation of the polyethylene articular surface damage. Methods. 45 Genesis II posterior-stabilized polyethylene inserts (12 matched and 33 downsized tibial components) were CT scanned. 3D reconstructions were registered to corresponding pristine component reconstructions, and 3D deviation maps of the retrieved articular surfaces relative to the pristine surfaces were created. Each map was exported as a point cloud to a custom MATLAB code to calculate the area and weighted center of deviation of the articular surfaces. An iterative k-means clustering algorithm was used to isolate regions of deviation, and a shrink-wrap algorithm was applied to calculate their areas. The area of deviation was calculated as the sum of all regions of deviation and was normalized to the area of the articular surface. The location of deviation was described using the weighted center of deviation and the location of maximum deviation on the articular surfaces relative to the center of the post (Fig. 1). Pearson product moment correlations were conducted to examine the correlation between length of implantation (LOI) and the medial and lateral areas of deviation for all specimens, matched components, and downsized components. Results. The mean LOIs for downsized and matched tibial components were not different (36±28 months vs 46±26 months, p=0.24). Areas of deviation for the medial and lateral sides for both downsized and matched components increased with LOI (p<0.001). Medial and lateral sides of matched retrievals were not different in location of maximum deviation, maximum deviation, and weighted center of deviation (p>0.4). The matched and downsized retrievals did not have different centers of deviation in the medial-lateral direction, maximum deviations, or locations of maximum deviations (p>0.1). Discussion. Our results suggest that downsizing the tibial component in the Genesis II system, a single coronal geometry system, did not affect the area or location of deviation on the articular surface. Overall, the weighted center of deviation remained close to the dwell point and did not change as a function of tibial downsizing. However, we saw deviation patterns biased peripherally for inserts with low LOI in both matched and downsized cohorts. With increasing LOI, the deviation expanded to cover the majority of the available articular surface. Our results suggest the need to further examine this and other systems determine the effects of differential sizing. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 13 - 13
1 Apr 2018
Knowles N Langohr G Athwal G Ferreira L
Full Access

BACKGROUND. Stability of the glenoid component is essential to ensure successful long-term outcomes following Total shoulder arthroplasty (TSA), and may be improved through better glenoid component design. As such, this study assessed identical all-polyethylene glenoid components stability, having various fixation types, using component micromotion under simulated joint loading in an osteoarthritic patient cohort. METHODS. Five all-polyethylene glenoid component designs were compared (Keel, Central-Finned 4-Peg, Peripheral 4-Peg, Cross-Keel, and Inverted-Y). A cement mantle surrounded each fixation type, except the Central-Finned 4-Peg which was surrounded by bone. The humeral component had a non-conforming radius of curvature. Scapular models of six type A1 osteoarthritic male patients (mean: 61 years old, range: 48 to 76 years old) were assigned heterogeneous bone properties based on CT intensity. Each of the 30 scapula models were truncated and fully constrained on the medial scapular border. The bone/cement interface was fully bonded, and the fixation feature/cement interface was frictionally constrained. A ‘worst case’ load magnitude of 125% BW of a 50th percentile male was used. A purely compressive load was applied to the center of the glenoid component, followed by superior, superior-posterior, posterior, inferior-posterior, and inferior loads. Stability of the glenoid component based solely on the fixation type was determined using the mean and maximum normal (liftoff) and tangential (sliding) micromotion in six regions of the glenoid component. RESULTS. The greatest mean normal micromotion occurred for the Inverted-Y (90 ± 36 μm) in the anterior- inferior region of the component under a posterior-superior directed load. The mean normal micromotions were significantly less for the same region and loading direction in the Peripheral 4-peg (48 ± 16 μm; p < .001) and Central-Finned 4-Peg (35 ± 13 μm; p < .001), but not significantly different for the Keel (78 ± 37 μm; p = .029), or Cross-Keel (82 ± 32 μm; p = .143). The same region and loading direction produced the maximum normal micromotion in the Inverted-Y (109 ± 43 μm), which was significantly greater than the other four components (Peripheral 4-peg, 61 ± 25 μm; p < .001, Keel, 89 ± 36 μm; p < .001, Central-Finned 4-Peg, 47 ± 19 μm; p < .001, and Cross-Keel, 92 ± 37 μm; p = .002). The greatest mean tangential micromotion occurred for the Cross-Keel (100 ± 36 μm) in the posterior-superior region of the glenoid component under a posterior-superior directed load. The mean tangential micromotions for all other components were significantly less (p < .001) for the same region and loading direction (Peripheral 4-peg, 73 ± 19 μm, Keel, 73 ± 22 μm, Central-Finned 4-Peg, 73 ± 26 μm, and Inverted-Y, 83 ± 24 μm). The same region and loading direction for the maximum tangential micromotion was also in the Cross-Keel (146 ± 46 μm), which was significantly greater (p < .001) from the other four components (Peripheral 4-peg, 111 ± 21 μm, Keel, 115 ± 34 μm, Central-Finned 4-Peg, 111 ± 39 μm, and Inverted-Y, 117 ± 34 μm). DISCUSSION. This study addressed the contribution of all-polyethylene glenoid component fixation types on component stability under simulated joint loading. Pegged components were significantly more stable than keeled components. An inverse relationship between normal and tangential micromotion was observed, with the greatest sliding (tangential micromotion) occurring in the direction of the applied load, and the greatest liftoff (normal micromotion) occurring opposite the applied load. This likely occurs due to polyethylene deformation of both the fixation features and the component as a whole


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 171 - 171
1 Sep 2012
Armitage MS Elkinson I Giles JW Athwal GS
Full Access

Purpose. Coracoid transfer is an effective reconstructive procedure for complex glenohumeral joint instability. Recently, the congruent-arc Latarjet procedure has been described which orients the coracoid graft undersurface flush to the glenoid articular margin. The purported advantage of this modification is that the radii of curvature of the coracoid undersurface and the anterior glenoid rim are believed to be similar, and therefore, congruent. The purpose of this study was to determine the dimensions of the coracoid and to compare the radius of curvature (ROC) of the coracoid undersurface to the ROC of the intact glenoid and various glenoid bone-loss scenarios. Method. Thirty-four CT-based 3D models of the shoulder were examined using commercially available software. The mean dimensions of the coracoid were determined and the ROC was calculated for the coracoid undersurface, the intact glenoid as well as 20%, 35% and 50% anterior glenoid bone-loss scenarios. Intra and inter-rater statistics were calculated. Results. The mean length, width and thickness of the coracoid were: 16.8 mm, 15.0 mm, and 10.5 mm, respectively. The mean ROC values were: coracoid: 13.6 mm, intact glenoid: 13.8 mm, 20% anterior glenoid bone-loss: 27.6 mm, 35% bone-loss: 30.5 mm, and 50% bone-loss: 33.3 mm. The coracoid ROC was not significantly different from the intact glenoid (p=0.75), however, was significantly less (p<0.01) than all glenoid bone-loss scenarios. Intra- and inter-rater reliability was good/excellent. Conclusion. The congruent-arc Latarjet is truly congruent if the coracoid is fixated to an intact anterior glenoid rim. In glenoids with 20% or greater anterior bone-loss, the congruent-arc Latarjet is no longer congruent


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_19 | Pages 45 - 45
1 Dec 2014
Tucker D Surup T Petersik A Kelly M
Full Access

Purpose:. Anterior positioning of a cephomedullary nail (CMN) in the distal femur occurs in up to 88% of cases. Conventionally, this is considered to occur because of a mismatch between the radius of curvature (ROC) of the femur and that of available implants. The hypothesis for this study was that the relative thicknesses of the cortices of the femur, particularly the posterior cortex are important in determining the final position of an intramedullary implant and that the posterior cortical thickness corresponds to the linea aspera anatomically. The aim was to determine if these measurements changed with age. Method:. This study used the data from CT scans undertaken as part of routine clinical practice in 919 patients with intact left femora (median age 66 years, range 20–93 years; 484 male and 435 female). The linea aspera was defined manually on the template bone by consensus between two orthopaedic surgeons and two anatomists. The length of the femur was measured from the tip of the greater trochanter proximally to the intercondylar notch distally. Transverse intervals were plotted on the femur between 25%–60% femoral bone length (5% increments). The linea aspera was then defined at each interval on the template bone and mapped automatically to all individual femora in the database. Results:. The linea aspera was found to be internally rotated as compared to the sagittal plane referenced off the posterior femoral condyles. An age related change in the posterior/anterior cortical thickness ratio was demonstrated. This ratio increases in all age groups from 25–60% bone length being maximal around 45–55% bone length. The ≥80 year old cohort shows a disproportional posterior/anterior ratio increase of 70.0% from 25–50% bone length as compared to 48.1% for the <40 year old cohort which is statistically significant (Mann-Whitney-Test p<0.05, α = 5%). Conclusion:. This study presents a novel method of investigating femoral anatomy with directly relevance to orthopaedic procedures. This study has shown that assessment in the sagittal plane may be inaccurate because the linea aspera changes in this plane throughout the length of the femur. It also shows the loss of the centering influence of the corticies with age with a relative thinning of the anterior cortex with a concomitant thickening of the posterior cortex moving distally in the femur. This has a very direct and significant influence on the positioning of intramedullary femoral implants explaining the preponderance of anterior malpositioning of intramedullary implants in the elderly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 105 - 105
1 Jan 2016
Onishi Y Ishimaru M Hino K Shiraishi Y Miura H
Full Access

Introduction. MERA Quest Knee System (Quest Knee) is a posterior cruciate ligament–retaining prosthesis considering the anatomical features and lifestyles of the Japanese. As for the anatomical features, we reduced the size of prosthesis and set a smaller interval of sizes because Japanese knees are smaller and flatter than those of Caucasians. As for the lifestyles, we evaluated in vivo patellar tracking during deep knee flexion and the condylar geometry in the axial plane of magnetic resonance imaging. It was found that the patella sank deeply into the intercondylar notch and that the articular surface of the lateral condyle began to curve steeply. We adopted this shape and engraved the lateral condyle deep to reduce the pressure of the patellofemoral joint and to get better range of motion (ROM). For the contact pressure rise in the femorotibial joint by engraving the lateral condyle, the insert was suited to the shape of the femoral component. Furthermore, we increased the thickness of the posterior flange of the femoral component and changed the posterior radius of curvature gradually, and this shape allowed the flexion of 155°. We have used Quest Knee for clinical applications from October 2009. We studied the short-term results of Quest Knee. Methods. Between June 2010 and July 2013, the same senior surgeon performed 59 consecutive primary operations with Quest Knee. Forty patients (44 knees) were women, and 14 patients (15 knees) were men. The mean patient age was 72.5 years (range, 59–89 years). All were osteoarthritis knees. Coronal deformity was varus in 58 knees and valgus in one knee. All operations were performed with a measured resection technique, and all patellae were resurfaced. Clinical evaluations were assessed using the Japanese Orthopaedic Association knee rating score (JOA score), and clinical ROM and standing femorotibial angle (FTA) were measured. Additionally, three-dimensional motion analysis of the patellar component during squatting was performed by the image matching method with image correlations. Results. The mean follow-up period was 17.4 months (range, 6–43 months). The JOA score at preoperative and follow-up were 57.5 ± 10.1 and 87.5 ± 5.6 points, respectively (P < 0.0001) (Fig. 1). The ROM at preoperative and follow-up were 127.4 ± 11.1 and 126.2 ± 9.0° (P = 0.47) (Fig. 2). The mean FTA at preoperative and follow-up were 184.2 and 172.3°. With regard to the three-dimensional motion analysis, the patella showed lateral shift during squatting (Fig. 3). Discussion. As for the patellofemoral contact pressure at flexion in total knee arthroplasty, a biomechanical study has reported that the pressures of posterior cruciate ligament–retaining and posterior-stabilized knees were 3.2 and 2.8 times as much as the body weight. This report suggests that the reduction of the pressure of the patellofemoral joint during deep knee flexion results in better ROM. We suppose that Quest Knee reduced the pressure, led the patella to the lateral side, and achieved better ROM. Conclusions. Short-term results of Quest Knee were good. More detailed studies are needed to get better function and long-term durability


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 3 - 3
1 Jun 2012
Amadi H
Full Access

Introduction. Advanced medical imaging techniques have allowed the understanding of the patterns of relative bone motions at human joints. 1. However, poor imaging contrasts of soft tissues have not allowed the full understanding of various glenohumeral ligaments (GHL) functions during glenohumeral joint (GHJ) manoeuvres. This is presently a significant limitation to research as these structures are said to be responsible for the passive stability of the GHJ. 2. Furthermore, the repairs of GHJ instability often take recourse to these structures. 3. Earlier studies have presented a model that numerically reconstructs or simulates GHJ motions. 4. and how the locus of bony attachment points of the GHLs on a dynamic GHJ could be numerically tagged and trailed. 5. The aim of this study was to advance these previous findings by developing an algorithm that allows the quantification of GHL lengths at any instantaneous position of the GHJ. Materials and Method. CT scan of a set of humerus and scapula was reconstructed into two individual surface meshes of interconnected nodes, each node having a unique vectorial identification in space. The two attachment nodes (a and b) of a GHL were identified on the bones. 5. Least squares geometric sphere was fitted upon the humeral head (HH) and its centre (c) and radius (r) quantified. 6. Vectors a, b and c were applied to represent the ‘dominant ligament plane’ concomitant with the 2D ‘dominant plane’ of Runciman (1993). 7. This plane defined the path through which the ligament wrapped on the HH. The point of initial or end of contact of GHL on the HH was defined as the point on HH where a line from c intercepts the ligament at 90°. Total GHL length was calculated as the sum of its three segments, namely: (1) Proximal segment – a straight line from its glenoid attachment node to the point of initial contact (2) Wrap segment – an arc of (r) radius of curvature from initial to end contact points (3) Distal segment – a straight line from end contact point to the humeral node of attachment. The wrap segment was further refined by adjusting ligament contacts along this path to the actual surface contour of the HH by integrating all the surface nodes along the path. The algorithm was tested for short incremental steps of GHJ abduction, flexion, rotation and translations on the Amadi et al's kinematics simulation model. 4. . Results. From plotted graphs of 5 simulated GHL, lengths increased or decreased smoothly as the rotations and translations were increased or decreased at a constant rate, respectively. Some GHJ motion directions resulted in contrasting stretching or folding effects on different ligaments in a mathematically reasonable manner. Conclusion. This numerical application would allow the quantification of functional loading of each GHL during simulated or reconstructed GHJ motion and hence provide understanding of how the various GHL may be treated during surgical repairs