Mobility plays an important role, in particular for patients with osteoporosis and after trauma surgery, both as an outcome and as treatment. Mobility is closely linked to the patient”s quality of life and exercise is a powerful additional treatment option. In order to be able to generate an evidence base to evaluate various surgical and non-surgical treatment options, objective measurements of patient mobility and exercise over a certain time period are needed. Wearables are a promising candidate, with obvious advantages compared to questionnaires and/or PROs. However, when extracting parameters with wearables, one often faces the problem of algorithms not performing well enough for special cases like slow gait speeds or impaired gait, as they typically appear in this patient group. We plan to further extend the applicability of the actibelt system (3D accelerometer, 100Hz), in particular to improve the measurement precision of real-world walking speed in slow and impaired walking. We are using a special measurement wheel including a rotating 3D accelerometer that allows to capture high quality real-world walking speed and distance measurements, and a mobile high resolution camera system. In a first block 20 patients with osteoporosis were included in the study at the Ludwigs-Maximilians-University”s Department of General, Trauma and
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.