Advertisement for orthosearch.org.uk
Results 1 - 20 of 33
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 131 - 131
1 Nov 2021
Im G
Full Access

Osteoarthritis (OA) is the most common type of arthritis and causes a significant deterioration in patients’ quality of life. The high prevalence of OA as well as the current lack of disease-modifying drugs led to a rise in regenerative medicine efforts. The hope is that this will provide a treatment modality with the ability to alter the course of OA via structural modifications of damaged articular cartilage (AC). Regenerative therapy in OA starts with the concept that administered cells may engraft to a lesion site and differentiate into chondrocytes. However, recent studies show that cells, particularly when injected in suspension, rapidly undergo apoptosis after exerting a transient paracrine effect. If the injected stem cells do not lead to structural improvements of a diseased joint, the high cost of cell therapy for OA cannot be justified, particularly when compared with other injection therapeutics such as corticosteroids and hyaluronic acid. Long-term survival of implanted cells that offer prolonged paracrine effects or possible engraftment is essential for a successful cell therapy that will offer durable structural improvements. In this talk, the history and current status of regenerative therapy in OA are summarized along with the conceptual strategy and future directionsfor a successful regenerative therapy that can provide structural modifications in OA.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 12 - 12
2 Jan 2024
Montes A Mauro A Cerveró-Varona A Prencipe G El Khatib M Tosi U Wouters G Stöckl J Russo V Barboni B
Full Access

Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models.

Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches.

ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h).

Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration.

Acknowledgements: This research is part of the P4FIT project ESR5, under the H2020MSCA-ITN-EJD-P4 FIT-Grant Agreement ID:955685.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 47 - 47
2 Jan 2024
Cerveró-Varona A Canciello A Prencipe G Peserico A Haidar-Montes A Santos H Russo V Barboni B
Full Access

The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies.

Acknowledgement: This research is part of the P4FIT project ESR1, funded under the H2020-ITN-EJD-Marie-Skłodowska-Curie grant agreement 955685.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 89 - 89
1 Nov 2018
Weiss P
Full Access

20 years ago, we designed injectable bioactive suspensions in water of calcium phosphate ceramics for bone and periapical regenerations. Because of leakage of these suspensions, we focused on injectable hydrogels before to set in situ by chemical crosslinking to form 3D scaffolds. We set up a platform to develop a series of innovative hydrogels for bone, cartilages and periodontal tissue regeneration. We based our strategy on polysaccharides macromolecules because they are renewable materials, that originate from biological sources and generally are biocompatible, non-toxic and biodegradable. We developed a family of silated macromolecules able to react forming biocompatible hydrogels. The silated polymers are self-setting hydrogels able to covalently crosslink under pH variation, without addition of toxic crosslinking agent. All these macromolecules could be combined in multicomponent hydrogels, representing a strategy for improving mechanical properties of biomaterials or to tailor particular properties to meet specific needs. For mineral scaffolding, we realized composites of calcium phosphates particles or cements with hydrogel, increasing the ductility and creating macroporous scaffold to propose foam bone cements well adapted to bone biomaterials and Bone tissue engineering. Perspectives are 3D printing and bio printing techniques. We will use our hydrogels platform to prepare tunable (bio)inks in skeletal medicine.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 53 - 53
1 Nov 2018
Redl H
Full Access

The human amniotic membrane (hAM) contains cells of stem cell characteristics with low immunogenicity and anti-inflammatory properties and has for centuries been applied in the clinics especially for ophthalmology and wound care. It has recently been shown to be promising for novel applications such as tissue engineering and regenerative medicine. Towards these novel applications, we have demonstrated the potential of hAM in toto to differentiate towards bone, cartilage, Schwann like cells and recently also a producer of surfactant. We have further investigated the relevance of the location of origin for the therapeutic potential of the membrane. We show that placental and reflected hAM differs distinctly in morphology and functional activity. The placental region has significantly higher mitochondrial activity, however lower levels of reactive oxygen species, which suggests that placental and reflected regions may have different potential for tissue regeneration. We have further investigated the suitability of hAM to support therapeutic cells and have improved its maintenance in vitro towards xeno-free conditions.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 57 - 57
1 Nov 2021
Sakai D
Full Access

Low back pain is thought to relate to intervertebral disc (IVD) degeneration. Although the mechanisms have not been clearly identified, exhaustion of nucleus pulposus cells and their producing matrix is regarded as one cause. The matrix of the IVD is continuously replenished and remodeled by tissue-specialized cells and are crucial in supporting the IVD function. However, due to aging, trauma, and genetic and lifestyle factors, the cells can lose their potency and viability, thereby limiting their collective matrix production capacity.

We have discovered the link between loss of angiopoietin-1 receptor (Tie2)-positive human NP progenitor cells (NPPC) and IVD degeneration. Tie2+ cells were characterized as undifferentiated cells with multipotency and possessing high self-renewal abilities. Thus we and others have proposed Tie2+ NPPC as a potent cell source for regenerative cell therapies against IVD degeneration. However, their utilization is hindered by low Tie2-expressing cell yields from NP tissue, in particular from commonly available older and degenerated tissue sources. Moreover, NPPC show a rapid Tie2 decrease due to cell differentiation as part of standard culture processes. As such, a need exists to optimize or develop new culture methods that enable the maintenance of Tie2-expressing NPPC. Trials to overcome these difficulties will be shared.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 91 - 91
1 Nov 2018
Tournier P Maltezeanu A Paré A Lesoeur J Dutilleul M Veziers J Gaudin A Barbeito A Bardonnet R Geoffroy V Corre P Guicheux J Weiss P
Full Access

Skeletal sequels of traumatisms, diseases or surgery often lead to bone defects that fail to self-repair. Although the gold standard for bone reconstruction remains the autologous bone graft (ABG), it however exhibits some drawbacks and bone substitutes developed to replace ABG are still far for having its bone regeneration capacity. Herein, we aim to assess a new injectable allogeneic bone substitute (AlloBS) for bone reconstruction. Decellularized and viro-inactivated human femoral heads were crushed then sifted to obtain cortico-spongious powders (CSP). CSP were then partly demineralized and heated, resulting in AlloBS composed of particles consisting in a mineralized core surrounded by demineralized bone matrix, engulfed in a collagen I gelatin. Calvarial defects (5mm in diameter, n=6/condition) in syngeneic Lewis1A rats were filled with CSP, AlloBS±TBM (total bone marrow), BCP (biphasic calcium phosphate)±TBM or left unfilled (control). After 7 weeks, the mineral volume/total volume (MV/TV) ratios were measured by µCT and Movat's pentachrome staining were performed on undemineralized frontal sections. The MV/TV ratios in defects filled with CSP, AlloBS or BCP were equivalent, whereas the MV/TV ratio was higher in AlloBS+TBM compared to CSP, AlloBS or BCP (p<0.01; Mann-Whitney). Histological analyses exhibited a collagen-rich matrix in all the defects, and osteoid at the surface of all implanted biomaterials. Our data indicates that AlloBS is a promising candidate for bone reconstruction, with ease of manipulation, injectability and substantial osteogenic capacity. Further experiments in larger animal models are under consideration to assess whether AlloBS may be a relevant clinical alternative to ABG.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 230 - 230
1 Mar 2010
Stephan S Johnson E Roberts S
Full Access

Background: Degeneration of the intervertebral disc is associated with back pain. Cell transplantation to enhance disc regeneration is an attractive concept and clinical trials using autologous disc cells have begun. However, the capacity of the disc, which is poorly supplied by blood vessels, to support viable cells is currently unclear. In this study, we have assessed cell seeding densities and nutrition required to optimise nucleus pulposus (NP) cell survival and proliferation.

Methods: NP cells were cultured in alginate beads at cell seeding densities 1.25×105 – 1.0×106 cells/ml, either in 10% or 20% serum (vol/vol) ± glucose for 8 days. Cell proliferation was measured by immunopositivity for a proliferation marker, the Ki67 antigen. Cell viability was assessed by DAPI staining.

Results: NP cells grown in 10% serum with glucose proliferated and formed cell clusters at low cell seeding densities; however, this proliferative response was significantly decreased at the higher cell seeding densities. Increasing serum from 10% to 20% markedly increased the size of cell clusters that formed. Interestingly, cells grown in 20% serum but without glucose produced the largest cell clusters, some containing > 40 cells. However, DAPI staining revealed that many cells forming these clusters were dieing via apoptosis.

Conclusion: The manipulation of cells in culture, prior to transplantation into degenerate discs, may be key to optimising cell-mediated tissue regeneration. This study has shown that the number of cells transplanted and the level of nutrition available in the degenerate disc microenvironment may directly influence cell proliferation and survival potential and therefore their regenerative capability.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 55 - 55
1 Mar 2010
Sharp* D Martin A Khan N Simpson H Noble B
Full Access

Approximately 5 – 10% of all bone fractures are associated with impaired healing. It is thought that regenerative medicine has the potential to improve on existing treatments for non-union fractures, and the European market for such treatments is projected to reach £2.2 billion in 2010. The use of scaffolds for the delivery of both growth factors and human Marrow Stromal Cells (hMSCs) is thought to be a promising approach. It may be desirable to promote proliferation and chemotaxis of hMSCs at the defect site shortly after implantation, and differentiation in the longer term. This is likely to require a dual delivery system, capable of releasing multiple drugs with different release profiles. Our aim has been to develop a polymer scaffold capable of releasing bioactive molecules that are able to direct the differentiation of primary hMSCs down the osteoblastic lineage. We have examined two mutually compatible drug delivery systems: collagen coating for short term release, and polymer encapsulation for longer term release.

Polymer scaffolds were manufactured and coated with Type I Collagen containing BMP-7. hMSCs from three different patient sources were exposed to the scaffolds for 14 days. The cells were then histochemically stained for Alkaline Phosphatase (ALP) and photographed. The areas of ALP staining were then normalised against the total cell count.

Normalised ALP expression was increased compared to the controls for three different patients (‘110 ± 39% SE, n=6, p=0.005’, ‘540 ± 270% SE, n=6, p=0.001’, and ‘32 ± 17% SE, n=6’). Scaffolds were also manufactured either with 1,25 Vitamin D3 (another active compound) in a coating of Collagen, or encapsulated using proprietary methodologies. It was found that both treatments significantly increased normalised Alkaline Phosphatase expression within the 14d experimental period demonstrating release of the active 1,25 Vitamin D3 (’88 ± 37% SE, n=6, p=0.012’ and ‘100 ± 32% SE, n=6, p=0.012’ respectively).

Our findings suggest that, subject to future testing and development, such bioactive scaffolds could form the basis for a dual drug delivery system, suitable for applications in bone regenerative medicine.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 3 - 3
1 Nov 2018
Barritault D
Full Access

Matrix therapy is a newly coined name emphasizing the importance of the extracellular matrix in regenerative medicine. Heparan sulfates (HS) are key elements of the extracellular matrix (ECM) scaffold which store and protect most growth factors/cytokines controlling the cell migration and differentiation required for healing processes. We have engineered biodegradable nano-polymers (alpha 1–6 polyglucose carboxymethyl sulfate) mimicking (RGTA®) to replace destroyed HS in the damaged ECM scaffolding and to protect cytokines produced by healthy neighbouring cells, thereby restoring the ECM microenvironment and tissue homeostasis and, if needed, provide a homing niche for cell therapy. This matrix therapy approach has considerably improved the quality of healing in various animal models, including muscle and tendon, with reduction or absence of fibrosis resulting in a regeneration process. Over 50 000 patients have been treated in the last years for skin and corneal wounds with dedicated products based on this technology. A randomized controlled trial was performed on 22 racing French Standardbred Trotters (ST) horses to evaluate the efficacy of another polymer, OTR4131 Equitend®, to treat tendinopathies. We evaluated the effect versus placebo on acute superficial digital flexor tendonitis over 4 months by clinical and ultrasonographic measures and their racing performances followed up over the 2 years after treatment. A significant reduction on tendon cross section area was measured in treated animals, racing was 2–3 times more often than placebo, with 3.3 times fewer recurrences and pre-injury performance level was maintained. This study may pave the way for development in humans.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 77 - 77
1 Nov 2018
Reis RL
Full Access

The selection of a proper material to be used as a scaffold or as a hydrogel to support, hold or encapsulate cells is both a critical and a difficult choice that will determine the success of failure of any tissue engineering and regenerative medicine (TERM) strategy. We believe that the use of natural origin polymers, including a wide range of marine origin materials, is the best option for many different approaches that allow for the regeneration of different tissues. In addition to the selection of appropriate material systems it is of outmost importance the development of processing methodologies that allow for the production of adequate scaffolds/matrices, in many cases incorporating bioactive/differentiation agents in their structures. An adequate cell source should be selected. In many cases efficient cell isolation, expansion and differentiation, and in many cases the selection of a specific sub-population, methodologies should be developed and optimized. We have been using different human cell sources namely: mesenchymal stem cells from bone marrow, mesenchymal stem cells from human adipose tissue, human cells from amniotic fluids and membranes and cells obtained from human umbilical cords. The development of dynamic ways to culture the cells and of distinct ways to stimulate their differentiation in 3D environments, as well as the use of nano-based systems to induce their differentiation and internalization into cells, is also a key part of some of the strategies that are being developed in our research group. The potential of each combination materials/cells, to be used to develop novel useful regeneration therapies will be discussed. The use of different cells and their interactions with different natural origin degradable scaffolds and smart hydrogels will be described. Several examples of TERM strategies to regenerate different types of musculoskeletal tissues will be presented. Relevance to orthopaedics will be highlighted.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 28 - 28
1 Nov 2018
Guicheux J
Full Access

Degeneration of intervertebral disc (IVD) Nucleus Pulposus (NP) is a major cause of low back pain (LBP). Healthy NP contains two cell types: notochordal cells (NTC) and nucleopulpocytes (NPCytes). While NTC are embryonic notochord derived cells that are regarded as the resident stem cells of NP, NPCytes are considered the mature NP cells responsible for extracellular matrix (ECM) synthesis. During IVD aging, some still unknown cues drive NTC disappearance. This loss of NTC alters their dialog with NPCytes thereby jeopardizing cell viability and ECM homeostasis, which in turn drives NP degeneration. In this context, NP regeneration by re-establishing this NTC/NPCytes dialog has been contemplated with clinical interest. We will first share our view of the mesenchymal stem cells (MSC)-based therapies that have been preclinically and clinically assessed in LBP. We will then comment on the biomaterial-assisted MSC therapies that recently enter the scene of IVD regeneration. Finally, we will present our REMEDIV project that aims at developing a NP substitute containing stem cells-derived NPCytes and NTC within an injectable hydrogel. We will share our results regarding the generation of NPCytes from adipose-derived MSC and our recent unpublished evidences that human induced-pluripotent stem cells can be differentiated into NTC. Finally, we will consider our ability to transplant these regenerative cells using hydrogels in various animal models. Whether this concept could open new therapeutic windows in the management of discogenic low back pain will finally be discussed.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 261 - 261
1 Jul 2014
Stanco D Viganò M Thiebat G de Girolamo L
Full Access

Summary

Mesenchymal stem cells from human semitendinosus and gracilis tendons (TSPCs) could be a promising MSCs resource for tissue-engineering application. In comparison to adipose-derived stem cells, TSPCs possess similar stem-cells properties and a higher chondrogenic differentiation potential.

Introduction

Mesenchymal stem cells (MSCs) isolated from bone marrow (BMSCs) or adipose tissue (ASCs) have been deeply characterised for their usefulness in musculoskeletal tissue regeneration. However, other potentially valuable MSCs sources have been recently proposed. The goal of this study was to isolate MSCs from human semitendinosus and gracilis tendons (TSPCs, tendon stem progenitor cells) and to compare their features with that of human ASCs.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 116 - 116
1 Dec 2020
Tilotta V Cicione C Giacomo GD Ambrosio L Russo F Papalia R Vadalà G Denaro V
Full Access

Intervertebral disc degeneration (IDD) affects more than 80% of the population and is often linked to a reduction of the proteoglycan content within the nucleus pulposus (NP). The nutritional decline and accumulation of degraded matrix products promote the inflammatory process favoring the onset of disease. Several regenerative approaches based on cell therapy have been explored. Recently, paracrine factors and extracellular vesicles (EVs) such as exosomes have been described to play a fundamental role in the cross-talk between mesenchymal stem cells (MSCs) and NP in the microenvironment. EVs vehicule different molecules: proteins, nucleic acids and lipids involved in intercellular communication regulating the homeostasis of recipient cells. Therefore, MSCs-derived exosomes are an interesting emerging tool for cell-free therapies in IDD.

The aim of this study was to evaluate the in vitro effects of MSCs derived exosomes on human NP cells (hNPCs).

Exosomes were isolated through a multistep ultracentrifugation of bone marrow-MSCs (BM-MSCs) conditioned media (CM), obtained by culturing BM-MSCs without fetal bovine serum (FBS) for 48 hours. Exosomal morphology was characterized by transmission electron microscope (TEM). The exosomes were quantified by bicinchoninic acid assay (BCA) and cryopreserved at –80 °C. hNPCs derived from surgical speciments digested with type II collagenase. After culture expansion in vitro, hNPCs in alginate beads (three-dimensional culture system) were treated with growth medium (controls), exosomes, CM, interleukin-1 beta (IL-1b), IL-1b plus exosomes, IL-1b plus CM. After 24 hours, total RNA was extracted and reverse-transcribed. Gene expression levels of catabolic and anabolic genes were analyzed through real time-polymerase chain reaction (qPCR).

TEM analysis confirmed the cup-shaped vescicles in our preparations. Gene expression levels resulted to be modulated by both exosomes and CM compared to controls. In addition, both treatments were capable to alter the inflammatory stimuli of IL-1b. Interestingly, exosomes were able to change anabolic and catabolic gene expression levels differently from CM.

In our experimental conditions, both exosomes and CM from BM-MSCs could be an interesting alternative strategy in intervertebral disc regeneration, overcoming the costs and translational limits of cell therapy to the clinical practice.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 104 - 104
1 Dec 2020
Mak CC To K Fekir K Brooks RA Khan WS
Full Access

SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between and preconditioning of mesenchymal stem cells (MSCs) with chondrocytes through comparing SOX gene expression in their co-culture and respective monocultures.

Our study adopted an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=7). Samples were handled according to the 2004 UK Human Tissue Act. Cells were purified and co-cultured with one AMSC for every chondrocyte at 5000 cells/cm2. The AMSCs were characterised by a panel of MSC surface markers in flow cytometry and were allowed to undergo trilineage differentiation for subsequent histological investigation. SOX5, SOX6, and SOX9 expression of co-cultures and monoculture controls were quantified by TaqMan quantitative real-time PCR. Experiments were performed in triplicate.

AMSC phenotype was evidenced by the expression of CD105, CD73, CD90 & heterogenous CD34 but not CD45, CD14, CD19 & HLA-DR in flow cytometry, and also differentiation into chondrogenic, osteogenic and adipogenic lineages with positive Alcian blue, Alizarin Red and Oil Red O staining. The expression of SOX5, SOX6, and SOX9 were greater in observed co-cultures than would be expected from an expression profile modelled from monocultures.

The findings provides evidence for the upregulation of SOX family transcription factors expression during the co-culture of MSCs and chondrocytes, suggesting an active induction of chondrogenic differentiation and change of cell fate amidst a microenvironment that facilitates cell-contact and paracrine secretion. This provides insight into the chondrogenic potential and therapeutic effects of MSCs preconditioned by the chondrocyte secretome (or potentially chondrocytes reinvigorated by the MSC secretome), and ultimately, cartilage repair.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 14 - 14
2 Jan 2024
Moroni L
Full Access

Regenerative medicine (RM) promises to restore both the mechanical functionality and the biological composition of tissues after damage. Three-dimensional scaffolds are used in RM to host cells and let them produce proteins that are the building blocks of the native tissues. While regenerating tissues evolve over time through dynamic biomechanical and biochemical changes, current scaffolds’ generation are passive causing mechanical mismatch, suboptimal growth, and pain. Furthermore, current scaffolds ignore the complexity of the reciprocal bio-mechanics regulation, hindering the design of the next-gen scaffolds. To regenerate tissues and organs, biofabrication strategies that impart spatiotemporal control over cell-cell and cell-extracellular matrix communication, often through control over cell and material deposition and placement, are being developed. To achieve these targets, the spatiotemporal control over biological signals at the interface between cells and materials is often aimed for. Alternatively, biological activity can be triggered through the control of mechanical cues, harnessing more fundamental know-how in mechanobiology that could be combined with biofabrication strategies. Here, I present some of our most recent advancements in merging mechanobiology with biofabrication that enabled the control of cell activity, moving towards enhanced tissue regeneration as well as the possibility to create more complex 3D in vitro models to study biological processes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 105 - 105
2 Jan 2024
Im G
Full Access

Extensive bone defects, caused by severe trauma or resection of large bone tumors, are difficult to treat. Regenerative medicine, including stem cell transplantation, may provide a novel solution for these intractable problems and improve the quality of life in affected patients. Adipose-derived stromal/stem cells (ASCs) have been extensively studied as cell sources for regenerative medicine due to their excellent proliferative capacity and the ability to obtain a large number of cells with minimal donor morbidity. However, the osteogenic potential of ASCs is lower than that of bone marrow-derived stromal/stem cells. To address this disadvantage, our group has employed various methods to enhance osteogenic differentiation of ASCs, including factors such as bone morphogenetic protein or Vitamin D, coculture with bone marrow stem cells, VEGF transfection, and gene transfer of Runx-2 and osterix. Recently, we mined a marker that can predict the osteogenic potential of ASC clones and also investigated the usefulness of the molecule as the enhancer of osteogenic differentiation of ASCs as well as its mechanism of action. Through RNA-seq gene analysis, we discovered that GSTT1 was the most distinguished gene marker between highly osteogenic and poorly osteogenic ASC clones. Knockdown of GSTT1 in high osteogenic ASCs by siGSTT1 treatment reduced mineralized matrix formation while GSTT1 overexpression by GSTT1 transfection or GSTT1 recombinant protein treatment enhanced osteogenic differentiation of low osteogenic ASCs. Metabolomic analysis confirmed significant changes of metabolites related to bone differentiation in ASCs transfected with GSTT1. A high total antioxidant capacity, low levels of cellular reactive oxygen species and increased GSH/GSSG ratios were also detected in GSTT1- transfected ASCs. GSTT1 can be a useful marker to screen the highly osteogenic ASC clones and also a therapeutic factor to enhance the osteogenic differentiation of poorly osteogenic ASC clones


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 34 - 34
2 Jan 2024
Karoichan A Tabrizian M
Full Access

Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have great promise in the field of orthopaedic nanomedicine due to their regenerative, as well as immunomodulatory and anti-inflammatory properties. Researchers are interested in harnessing these biologically sourced nanovesicles as powerful therapeutic tools with intrinsic bioactivity to help treat various orthopaedic diseases and defects. Recently, a new class of EV mimetics has emerged known as nanoghosts (NGs). These vesicles are derived from the plasma membrane of ghost cells, thus inheriting the surface functionalities and characteristics of the parent cell while at the same time allowing for a more standardized and reproducible production and significantly greater yield when compared to EVs. This study aims to investigate and compare the osteoinductive potential of MSC-EVs and MSC-NGs in vitro as novel tools in the field of bone tissue engineering and nanomedicine. To carry out this investigation, MSC-EVs were isolated from serum-free MSC conditioned media through differential ultracentrifugation. The remaining cells were treated with hypotonic buffer to produce MSC-ghosts that were then homogenized and serially extruded through 400 and 200 nm polycarbonate membranes to form the MSC-NGs. The concentration, size distribution, zeta potential, and protein content of the isolated nanoparticles were assessed. Afterwards, MSCs were treated with either MSC-EVs or MSC-NGs under osteogenic conditions, and their differentiation was assessed through secreted ALP assay, qPCR, and Alizarin Red mineralization staining. Isolation of MSC-EVs and MSC-NGs was successful, with relatively similar mean diameter size and colloidal stability. No effect on MSC viability and metabolic activity was observed with either treatment. Both MSC-EV and MSC-NG groups had enhanced osteogenic outcomes compared to the control; however, a trend was observed that suggests MSC-NGs as better osteoinductive mediators compared to MSC-EVs. Acknowledgements: The authors would like to acknowledge Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, CHRP, and McGill's Faculty of Dental Medicine and Oral Health Sciences for their financial support


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 72 - 72
2 Jan 2024
Agnes C Murshed M Willie B Tabrizian M
Full Access

Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2. Biocompatibility testing of both cell types is performed using AlamarBlue for metabolic activity, and nucleic acid staining for distribution. Osteoblastic differentiation is assessed through quantification of ALP and osteopontin secretion, as well as osteocalcin and mineralization staining. Differentiation into osteoclasts is verified using SEM and TEM, qPCR, and TRAP staining. Cellular viability of C2C12 cells and monocytes was maintained when cultured separately in scaffolds with and without BIO for 21 days. Both scaffold variations showed a characteristic increase in ALP secretion from day 1 to 7, indicating early differentiation but BIO-incorporated sponges yielded higher values compared to controls. SEM and TEM imaging confirmed initial aggregation and fusion of monocytes on the scaffold's surface, but BIO addition appeared to result in smoother cell surfaces indicating a change in morphology. Late-stage differentiation assessment and co-culture work in the scaffold are ongoing, but initial results show promise in the material's ability to support multilineage differentiation. Acknowledgements: The authors would like to acknowledge the financial support of the Collaborative Health Research Program (CHRP) through CIHR and NSERC, as well as Canada Research Chair – Tier 1 in Regenerative Medicine and Nanomedicine, and the FRQ-S