The early failure and revision of bimodular primary
total hip arthroplasty prostheses requires the identification of the
risk factors for material loss and wear at the taper junctions through
taper wear analysis. Deviations in taper geometries between revised
and pristine modular neck tapers were determined using high resolution
tactile measurements. A new algorithm was developed and validated
to allow the quantitative analysis of material loss, complementing
the standard visual inspection currently used. The algorithm was applied to a sample of 27 retrievals ( Cite this article:
Introduction. We previously reported a 28% short-term corrosion-related revision rate of recalled
Background:. The
Lesions in the joint surface are commonly treated with osteoarticular autograft transfer system (OATS), autologous cell implantation (ACI/MACI), or microfracture. Tissue formed buy the latter commonly results in mechanically inferior fibrocartilage that fails to integrate with the surrounding native cartilage, rather than durable hyaline cartilage. Fractional laser treatment to make sub-millimeter (<500 µm) channels has been employed for tissue regeneration in the skin to facilitate
Aims. The decrease in the number of satellite cells (SCs), contributing to myofibre formation and reconstitution, and their proliferative capacity, leads to muscle loss, a condition known as sarcopenia. Resistance training can prevent muscle loss; however, the underlying mechanisms of resistance training effects on SCs are not well understood. We therefore conducted a comprehensive transcriptome analysis of SCs in a mouse model. Methods. We compared the differentially expressed genes of SCs in young mice (eight weeks old), middle-aged (48-week-old) mice with resistance training intervention (MID+ T), and mice without exercise (MID) using next-generation sequencing and bioinformatics. Results. After the bioinformatic analysis, the PI3K-Akt signalling pathway and the regulation of actin cytoskeleton in particular were highlighted among the top ten pathways with the most differentially expressed genes involved in the young/MID and MID+ T/MID groups. The expression of Gng5, Atf2, and Rtor in the PI3K-Akt signalling pathway was higher in the young and MID+ T groups compared with the MID group. Similarly, Limk1, Arhgef12, and Araf in the regulation of the actin cytoskeleton pathway had a similar bias. Moreover, the protein expression profiles of Atf2, Rptor, and Ccnd3 in each group were paralleled with the results of NGS. Conclusion. Our results revealed that age-induced muscle loss might result from age-influenced genes that contribute to muscle development in SCs. After resistance training, age-impaired genes were reactivated, and age-induced genes were depressed. The change fold in these genes in the young/MID mice resembled those in the MID + T/MID group, suggesting that resistance training can
Modular total hip arthroplasty (MTHA) stems were introduced in order to provide increased intra-operative flexibility for restoring hip biomechanics, improving stability and potentially reducing revision risk. However, the additional interface at the neck-body junction provides another location for corrosion or mechanical failure of the stem. To delineate the mid term revision risk of MTHA stems, we examined data from the Canadian Joint Replacement Registry (CJRR) at the Canadian Institute for Health Information (CIHI). Kinectiv, Profemur and
Modularity of femoral components has been widely accepted at the head neck junction, most commonly combining two unlike metals with only sporadic reporting of compatibility issues and corrosion. The development and introduction of a new and improved modular neck junction (Rejuvenate Modular Femoral component, Stryker Orthopedics) provided the option of fine-tuning leg lengths, offset and stability. The surgical technique did indeed provide the desired endpoints, however, the early recognition of problems with the junction causing corrosion and Adverse Local Soft Tissue Reaction (ALTR) and subsequent revision has led to the product being voluntarily withdrawn from the market. My experience as an early user of this stem is described in this manuscript providing a better early recognition and treatment of this potentially very destructive process. Methods. A retrospective review of one hundred and ninety one
Orthographic radiography, a revelation at its inception, has been the orthopaedic standard for a century. It has facilitated osteology and empowered arthroplasty like no other parallel technology. While many new imaging modalities – nuclear scans, computerized axial tomography, magnetic resonance imaging, etc. – have advanced the art even further, plain XRays, quite frankly, remain the standard for identifying patient pathology and evaluating surgical intervention. The enlightened scrutiny of properly obtained and successfully reproduced radiographic images still yields far more information in the daily practice of orthopaedics than its more sophisticated and expensive derivatives. A detailed review of readily available diagnostic information is intended to
Introduction. Dual modular femoral stems for total hip arthroplasty were initially introduced to optimize joint biomechanics. These implants have been recalled due to fretting and crevice corrosion at the stem-neck interface, ultimately necessitating revision in a significant number of patients. At our institution we had experience with the
Mesenchymal stem cells (MSCs) are usually cultured in a normoxic atmosphere (21%) in vitro, while the oxygen concentrations in human tissues and organs are 1% to 10% when the cells are transplanted in vivo. However, the impact of hypoxia on MSCs has not been deeply studied, especially its translational application. In the present study, we investigated the characterizations of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in hypoxic (1%) and normoxic (21%) atmospheres with a long-term culture from primary to 30 generations, respectively. The comparison between both atmospheres systematically analyzed the biological functions of MSCs, mainly including stemness maintenance, immune regulation, and resistance to chondrocyte apoptosis, and studied their joint function and anti-inflammatory effects in osteoarthritis (OA) rats constructed by collagenase II.Aims
Methods
PURPOSE:. Wright Medical has a long history of modular neck hip implants but had fracture issues with the original titanium necks. They subsequently changed to chrome cobalt modular necks. Direct contact between these dissimilar metal parts in the modular femoral component brings into consideration the possibility of similar adverse reactions of metal-on-metal articulations that have been previously described in other designs. METHODS:. A retrospective review of 10 patients with Wright Medical chrome cobalt modular necks who were evaluated with chromium and cobalt metal ion levels as well as Metal Artifact Reduction Sequence (MARS) MRI's was performed. Pseudotumors were classified by MRI based on wall thickness, T1/T2 signal, shape, and location and given a corresponding type of I, II, or III. For each patient, symptoms or lack thereof were recorded, and time since surgery noted. RESULTS:. Of 10 patients tested, 9 were symptomatic, and 1 was asymptomatic. The patient that was asymptomatic at last clinical visit at 14 months post-op while symptomatic patients averaged 18 months since initial surgery before symptoms began. Those with metal-poly articulation had an average cobalt level of 1.6, ceramic-ceramic articulation had level of <1, and metal-on-metal had level of 2.9. Five patients had pseudotumor by MRI (2 type I, 1 type II, and 2 type III pseudotumors). CONCLUSION:. It appears that an unintended consequence of changing from titanium to chrome cobalt modular neck may be occurring secondary to corrosion at neck-stem junction. SIGNIFICANCE: This reaction does not appear to be design-specific as these findings are similar to our findings in Stryker
Introduction. Failure of the neck-stem taper in one particular bi-modular primary hip stem due to corrosion and wear of the neck piece has been reported frequently1, and stems were recalled. A specific pattern of material loss on the CoCr neck-piece taper in the areas of highest stresses on the proximal medial male taper was observed in a retrieval study of 27 revised
Osteoarthritis, as seen in the hip, is a disease which eventually embraces all the tissues of the joint but begins as a reaction of the juxta-chondral blood vessels to a degeneration of the articular cartilage; this reaction results in a hyperaemia of the bone. To our surprise we found that daily use preserves rather than "wears out" articular cartilage; indeed inadequate use is the commonest cause of cartilage degeneration and ensuing vascular invasion. To this factor are added the effects of excessive pressure in the many patients who require surgical treatment for advanced osteoarthritis of a hip the seat of some anatomical incongruity. This etiology based on cartilage suffering does not exclude, but indeed explains, the osteoarthritis implanted on joints of a normal shape which have been previously affected by acute or chronic inflammation or by hormonal dysfunction, such as acromegalic osteoarthritis. The stimulus to vessel growth and invasion is the same in all these casesânamely cartilage damage. Once the vessels have entered the cartilage the bone and marrow of the osteophyte are inevitably laid down. What is so damaging in osteoarthritis seems to be not the degeneration of the cartilage but the vigorous and persistent attempt at repair, an attempt which aggravates the already disordered function of the joint not only by osteophyte formation but by the hypervascularity which weakens the structure of the bone beyond the point where it can carry its increased load. The collapse that follows provokes further reparative efforts with the same deplorable results. The osteoarthritic process thus appears to be an attempt to transform a decaying joint into a youthful one and for this, as in the miraculous
Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model. Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone.Aims
Methods
Having previously been a proponent of the advantages of the modular neck in total hip arthroplasty, I now take the opposite argument because of corrosion that happens with all taper junctions. The advantage of the modular neck is the “uncoupling” of femoral stem position from the final position of the femoral head. Surgical priorities frequently compete, whether positioning the stem for the best press-fit (for cementless fixation) or the best cement mantle (for cemented fixation), and positioning of the stem for preventing dislocation and improving function. My personal use of the modular neck spanned approximately 4 years from 2003–2008 and encompassed a total of 390 primary and revision cases. Excellent functional results were obtained, but some problems occurred that were associated with the modular neck and with large diameter head metal-metal articulations. The modular neck was designed and studied at the Rizzoli Institute in Bologna, Italy with the conclusion that the strength of construct (titanium alloy neck in the titanium alloy stem) was sufficient and the potential for fretting at the modular junction was small and acceptable. Pre-market testing of the device met and exceeded all FDA suggested benchmarks. The first modular neck fracture in my personal series occurred more than 3 years after implantation, in a large man with a long, varus modular neck. Within a year another fracture of a long, varus modular neck occurred in a heavy man. I now know of 6 modular neck fractures among the 390 cases. We have found evidence of corrosion, some very severe, in modular necks that we have revised (both fractured and intact modular necks). This corrosion is caused by Mechanically Assisted Crevice Corrosion associated with fretting at the modular junction which leads to removal of the titanium oxide “passivation” layer that generally forms on a titanium implant. This exposes more of the substrate metal to oxidation and can create pits that, in the notch-sensitive titanium alloy, can lead to the initiation of fracture. The hydrogen that is created from the corrosion reaction and diffused into the metal can cause “embrittlement” which predisposes it to fracture. We also have seen “hydrogen pneumarthrosis” associated with corrosion of the titanium modular neck in which the corrosion concentrated the hydrogen gas in the femoral stem below the modular neck and suddenly was released into the joint with significant pain. The hydrogen gas is irritating to the joint capsule and the patient presents with intense pain and gas in the joint, a clinical picture that can be confused with infection in the joint with a gas-forming organism. We now know that the condition is self-limiting, but suggests that revision of the modular neck construct would be a reasonable course of action. Recently cobalt chromium modular necks have replaced those made of titanium alloy. Since cobalt-chromium is harder and stiffer, the milieu of the taper junction will be different than that of the titanium-titanium junction, and it has been suggested that this will allow safe and long-term use of the modular neck. The first titanium alloy necks were introduced in the early 1990s and it took until the mid-2000s to recognise problems. Last year the Stryker modular neck used with the
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article:
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article:
Following the recall of modular neck hip stems
in July 2012, research into femoral modularity will intensify over
the next few years. This review aims to provide surgeons with an
up-to-date summary of the clinically relevant evidence. The development
of femoral modularity, and a classification system, is described.
The theoretical rationale for modularity is summarised and the clinical
outcomes are explored. The review also examines the clinically relevant problems
reported following the use of femoral stems with a modular neck. Joint replacement registries in the United Kingdom and Australia
have provided data on the failure rates of modular devices but cannot
identify the mechanism of failure. This information is needed to
determine whether modular neck femoral stems will be used in the
future, and how we should monitor patients who already have them implanted. Cite this article:
The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables.Objectives
Methods
We conducted a randomised controlled trial to
determine whether active intense pulsed light (IPL) is an effective treatment
for patients with chronic mid-body Achilles tendinopathy. A total
of 47 patients were randomly assigned to three weekly therapeutic
or placebo IPL treatments. The primary outcome measure was the Victorian
Institute of Sport Assessment – Achilles (VISA-A) score. Secondary
outcomes were a visual analogue scale for pain (VAS) and the Lower
Extremity Functional Scale (LEFS). Outcomes were recorded at baseline,
six weeks and 12 weeks following treatment. Ultrasound assessment
of the thickness of the tendon and neovascularisation were also
recorded before and after treatment. There was no significant difference between the groups for any
of the outcome scores or ultrasound measurements by 12 weeks, showing
no measurable benefit from treatment with IPL in patients with Achilles tendinopathy. Cite this article: