Aim. Although there are no treatment guidelines for Propionibacterium acnes (PA) bone and joint infections (Corvec et al Acta Orthopedica 2016), these infections can be treated with a combination of fluoroquinolones and rifampicin. Rifampicin
Aim. Antimicrobial
Aim. Local antibiotic treatment for bone and joint infections offers direct delivery of high concentrations of antibiotics with reduced systemic exposure and favourable safety profile. However, the possibility of prolonged release of antibiotics at sub-therapeutic levels creates concern about the possible development of antimicrobial
Aim. In severe cases of postoperative spinal implant infections (PSII) multiple revision surgeries may be needed. Little is known if changes of the microbiological spectrum and antibiotic
Aim. Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is commonly associated with serious cases of community-onset skin and musculoskeletal infections (Co-SMSI). Molecular epidemiology analysis of CA-MRSA recovered from skin and soft tissues specimens is lacking in Latin America. This study aimed to identify phenotypic and genotypic features of MRSA isolates recovered from patients presenting Co-SMSI. Methods. Consecutive MRSA isolates recovered from Co-SMSI of patients admitted from March 2022 to January 2023 in a Brazilian teaching hospital were tested for antimicrobial
A common location for radius fracture is the proximal radial head. With the arm in neutral position, the fracture usually happens in the anterolateral quadrant (Lacheta et al., 2019). If traditional surgeries are not enough to induce bone stabilization and vascularization, or the fracture can be defined grade III or grade IV (Mason classification), a radial head prosthesis can be the optimal compromise between bone saving and recovering the “terrible triad”. A commercially available design of radial head prosthesis such as Antea (Adler Ortho, Milan, Italy) is characterized by flexibility in selecting the best matching size for patients and induced osteointegration thanks to the Ti-Por. ®. radial stem realized by 3D printing with laser technique (Figure 1). As demonstrated, Ti-Por. ®. push-out
Aim. There is an ongoing controversy whether the observed benefit of infection risk reduction by ALBC outweighs the risk of possible antimicrobial
Aim. Bone and implant-associated infections caused by microorganisms that grow in biofilm are difficult to treat because of persistence and recurrence. Systemic administration of antibiotics is often inefficient because the poor vascularization of the site of infection. This issue has led to the development of biomaterials capable to locally deliver high doses of therapeutic agents to the injured bone with minimal systemic effects. In this context, calcium sulphate/hydroxyapatite (CS/HA) bone graft substitutes are widely used being safe, osteoconductive and resorbable biomaterials that can be easily enriched with consistent amounts of antibiotics. In this in vitro study, the capability of the eluted antibiotics to select the tested bacterial strains for antibiotic
Introduction. Support of appositional bone ingrowth and
Introduction. Highly crosslinked, ultra-high molecular weight polyethylene (HXLPE) acetabular liners inherently have a risk of fatigue failure associated with femoral neck impingement. One of the potential reasons for liner failure was reported as crosslinking formulations of polyethylene, increasing the brittleness and structural rigidity. In addition, the acetabular component designs greatly affect the mechanical loading scenario, such as the offset (lateralized) liners with protruded rim above the metal shells, which commonly induce a weak
Introduction. Ideally, a patient receiving a unicondylar knee replacement will have fully functional anterior and posterior cruciate ligaments. When at least one of the cruciate ligaments is not fully functional, femoral and tibial implant contact position can potentially increase along the anterior-posterior (AP) axis. Where unicondylar implant wear testing typically uses AP
Aim. Bone and joint infections are frequent in African countries and their prevention and treatment remain a great challenge. This study aimed to determine the bacterial ecology and sensitivity of isolates to locally available antibiotics in orthopedic unit of a tertiary care hospital in Cameroun. Method. During a 12 months period, all the patients presenting with osteomyelitis or septic arthritis irrespective of the mechanism and the location were enrolled in this study. Intraoperative samples (biopsies) were taken and sent for microbiological analysis, and all strains isolated were tested for antibiotic sensitivity according to conventional methods. Results. on the 52 bacteriological analysis performed, 48 were positive. The most isolated germs were staphylococcus aureus (41.9 % of isolates), pseudomonas aeruginosa (14.5 %), Escherichia coli (14.5 %) and Klebsiella pneumonia (12.9 %). The antibiotic sensitivity pattern revealed worrying
The main objective of joint arthroplasty is to improve activities of daily living of the patient. However, normal daily activities may lead to separation of articular surfaces of an artificial joint, possibly as a result of a combined impact and sliding motion. Therefore, the properties of articular surfaces define the durability of implant materials. Modification of bearing surfaces with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) increases the hydration of the surfaces and decreases the wear of the substrates. Hence, a PMPC layer can potentially cushion the impact and improve the
Aim. There is a theoretical advantage for immediate postoperative start of rifampicin after debridement, antibiotics and implant retention (DAIR). Anti-biofilm treatment may be mostly needed during the first postoperative days in order to prevent new biofilm formation. However, there are concerns with regard to development of rifampicin
Aim. Fracture-related infection (FRI) is a serious complication after trauma. More often resistant micro-organisms are cultured. Gentamicin covers a wide variety of causative agents for FRI. A bio-absorbable antibiotic carrier, Cerament-G®, combines dead space management with local release of gentamicin in a one-stage approach. The achieved tissue concentrations of locally applied antibiotics are 4–8 thousand times higher than after systemic administration. Does Cerament-G® have antimicrobial activity towards bacteria that are not susceptible to systemic gentamicin administration. Method. The four most often cultured bacterial species found in FRI were used; Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Enterobacter cloacae. For each species, four different isolates were obtained, each with a different susceptibility for gentamicin. This susceptibility, expressed in the minimal inhibitory concentration (MIC), varied from completely susceptible (MIC 0,064 mg/L – 4mg/L), minimal
Introduction. The fatigue strength of ultrahigh molecular weight polyethylene (UHMWPE) in total joint implants is crucial to its long term success in high demand applications, such as in the knee, and is typically determined by measuring the crack propagation
Artificial knee joints are continuously loaded by higher contact stress than artificial hip joints due to a less conformity and much smaller contact area between the femoral and tibial surfaces. The higher contact stress causes severe surface damage such as pitting or delamination of polyethylene (PE) tibial inserts. To decrease the risks of these surface damages, the oxidation degradation of cross-linked polyethylene (PE) induced by residual free radicals resulting from gamma-ray irradiation for cross-linking or sterilization should be prevented. Vitamin E (VE), as an antioxidant, blended PE (PE(VE)) has been used to solve the problems. In addition, osteolysis induced by PE wear particles, bone cement and metallic debris is recognized as one of the important problems for total knee arthroplasty (TKA). To decrease the generation of PE wear particles, we have developed the bearing surface mimicking the articular cartilage; grafting a biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), onto the PE surface having high wear
Introduction. Third body wear caused by contaminated bearing environment with debris that may have been generated by a worn or fractured revised bearing coupling, but also originated by generation of metal/cement particles during the primary or revision surgery, may be a relevant issue for the implant life. Objectives. To evaluate the wear behavior of a last generation alumina matrix ceramic composite (AMC) bearing in a worst case scenario consisting of highly contaminated test lubricant with alumina particles in a hip joint simulator study. Methods. AMC (BIOLOX®delta - Group 1) and alumina (BIOLOX®forte - Group 2) liners with an internal diameter of 32mm were articulated against AMC BIOLOX®OPTION heads (all CeramTec GmbH, Plochingen). Coarse alumina particles (D(50):60µm) and fine alumina particles (D(50):0.30µm) with a concentration of 48mg/ml were used as environmental contamination of the first 2mlc and the second 2mlc, respectively. All components were tested according to ISO14242-1(2012) using the EndoLab®hip joint simulator. Each group consisted of 3 couples plus one axially loaded control consisting of a 32mm AMC head on an alumina liner. The test fluid was exchanged every 500'000 cycles. Two different test regimes describing level walking and subluxation of the insert from the femoral head were used as test input. The first regime included 500 standard walking cycles followed by a second block of 5 subluxation cycles. Head subluxation is assumed to increase the number of third-body particles that enter the otherwise closely conforming articular bearing space, when compared to level-walking cycles alone. To maintain the particle suspension in the test fluid, the test fluid of each test chamber was circulated by peristaltic pumps. The wear rate was determined by gravimetric method. The surface of ball heads was subjected to visual inspection every 500'000 cycles by optical and laser microscope. The depth of scratches was measured by the laser microscope. Results. After 2 million load cycles with the test fluid contaminated with coarse alumina particles, no significant wear was detected by the gravimetric method. The qualitative surface inspection by laser microscope individuated an increasing, but low concentration of sparse tiny scratches about 40nm deep on ball head surface at every simulator stop. Nevertheless, after loading the chambers with fine alumina particles, bearing surface wear seemed to increase consistently, since opaque areas appeared after 3 million load cycles, but the wear-rate remained close to the gravimetric measurement detection limit (about 0.1–0.2mg) indicating the still extremely low wear-rate of the tested ceramic couplings. Conclusions. This study confirms the high wear and scratch
Aim. The incidence of fractured neck of femur (FNOF) is increasing yearly. Many of these patients undergo hip hemiarthroplasty. High dose dual-antibiotic cement (HDDAC) has been shown to reduce rates of deep surgical site infection (SSI) when compared to the current standard low dose single-antibiotic cement (LDSAC) in a quasi-randomised controlled trial. Some concerns exist regarding the use of HDDAC and the development of
INTRODUCTION. Unlike current acetabular cups, this novel ceramic cup has a Ti/HA coating which removes the requirement for assembly into a metal shell which avoiding potential chipping/misalignment and reducing wall thickness [Figure 1]. This study examines the