There is a lack of carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotic for Staphylococcus aureus deep bone infections (DBIs). RIF is also associated with systemic side effects, and known for causing rapid development of antibiotic
Introduction. Exercise is recommended as first-line treatment for patients with hip osteoarthritis (OA). Interestingly, content and dose of exercise interventions seem to be important for the effect of exercise interventions, but the optimal content and dose is unknown. This warrants randomized controlled trials providing evidence for the optimal exercise program in Hip OA. The aim of this trial was to investigate whether progressive
The purpose of the study was to compare the mechanical properties, oxidation and wear
Background. As the number of ceramic THR bearings used worldwide is increasing, the number of implants that experience off-normal working conditions, e.g. edge loading, third bodies in the joint, soft tissues laxity, dislocation/subluxation of the joint, increases too. Under all such conditions the bearing surfaces can be damaged, leading eventually to a limitation of the expected performances of the implant. Methods. We characterised the damage
Background. It is hypothesised that good torsional
The excursion
Introduction and Objective. Hip osteoarthritis (OA) is the leading cause for total hip arthroplasty (THA). Although, being considered as the surgery of the century up to 23% of the patients report long-term pain and deficits in physical function and muscle strength may persist after THA. Progressive
Introduction. Progressive
Concomitant tumour
Abstract. Objective. To estimate the effect of calcar collar contact on periprosthetic fracture mechanics using a collared fully coated cementless femoral stem. Methods. Three groups of six composite femurs were implanted with a fully coated collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Periprosthetic fractures of the femur were simulated using a previously published technique. Fracture torque and rotational displacement were measured and torsional stiffness and rotational work prior to fracture were estimated. High speed video recording identified if collar to calcar contact (CCC) occurred. Results between trials where calcar contact did and did not occur where compared using Mann-Whitney U tests. Results. Where CCC occurred versus where no CCC occurred, fracture torque was greater (47.33 [41.03 to 50.45] Nm versus 38.26 [33.70 to 43.60] Nm, p= 0.05), Rotational displacement was less (0.29 [0.27 to 0.39] rad versus 0.37 [0.33 to 0.49] rad, p= 0.07), torsional stiffness was greater (151.38 [123.04 to 160.42] rad. Nm-1 versus 96.86 [84.65 to 112.98] rad.Nm-1, p <0.01) and rotational work was similar (5.88 [4.67, 6.90] J versus 5.31 [4.40, 6.56] J, p= 0.6). Conclusions.
Introduction. Tendon cross-sectional area (CSA) and stiffness increase in men during chronic exercise. The increase in tendon CSA and stiffness is not evident in women. In men, exercise increases tendon production of MMPs, IGF-1, and IL-6, which presumably contribute to tendon remodeling during chronic exercise. The purpose of this study was to determine if exercise-induced production of MMPs, IGF-1, and IL-6 are limited in women when compared to men. Materials and Methods. Young men (n=9, 27±1 y) and women (n=8, 26±1 y) performed a single bout of calf press exercise (8 sets of 15 repetitions at 70% of 15-RM). A microdialysis fiber (3000 kDa cut-off) was inserted into the space anterior to the Achilles tendon immediately after exercise and during a control experiment. All proteins were evaluated with ELISA kits. Results. In men IGF-I increased with exercise at 3 (p<0.05) but not 4 hrs. IGF-1 was not elevated at any measured time points in women. IL-6 increased with exercise to a similar extent in men and women at 3 hrs (p<0.05) but values returned to baseline at 4 hrs. MMP-9 increased with exercise at both 2 and 5 hours (p<0.05) in men but not in women. MMP-2 increased with exercise at 2 and 5 hrs to a similar extent in both men and women (p<0.05). In men TIMP-1 increased with exercise at 2 (p<0.05) but not 5 hrs. In women, TIMP-1 levels were elevated post-exercise at both 2 and 5 hrs (p<0.05). Discussion. In men,
250 words max Long polished cemented femoral stems, such as the Exeter Hip Revision stem, are one option available to the revision hip arthroplasty surgeon. When proximal bone stock is compromised, distal fixation is often relied upon for stability of the femoral component. In such circumstances, torsional forces can result in debonding and loosening. This study compared the torsional behaviour of a cemented polished and featureless (plain) stem with cemented, polished stems featuring fins or flutes. Nine torsional tests were carried out on each of these three different stem designs. The finned stem construct was significantly stiffer than the fluted stem (mean 24.5 Nm/deg v 17.5 Nm/deg). The plain stem mean stiffness was less than the featured stems (13 Nm/deg), but wide variability lead to no statistically significant difference. The maximum torque of the finned (30.5 Nm) and fluted stems (29 Nm) was significantly higher than the plain stem (10.5 Nm); with no significance to the difference between the finned and fluted stems. Distal stem features may provide a more reliable and greater
Introduction. Late (commenced 6 months to 4 years post-op) home-based progressive
Coating of titanium implants with BMP-2-loaded polyelectrolyte multilayer films conferred the implant surface with osteoinductive properties which are fully preserved upon both air-dried storage and γ-sterilization. Although BMP-2 is recognised as an important molecule for bone regeneration, its supraphysiological doses currently used in clinical practice has raised serious concerns about cost-effectiveness and safety issues. Thus, there is a strong motivation to engineer new delivery systems or to provide already approved materials with new functionalities. Immobilizing the growth factor onto the surface of implants would reduce protein diffusion and increase residence time at the implantation site. To date, modifying the surfaces of metal materials, such as titanium or titanium alloys, at the nanometer scale for achieving dependable, consistent and long-term osseointegration remains a challenging approach. In this context, we have developed an osteoinductive coating of a porous titanium implant using biomimetic polyelectrolyte multilayer (PEM) films used as carriers of BMP-2. The PEM films were prepared by alternate deposition of 24 layer pairs of poly(L-lysine) (PLL) and hyaluronic acid (HA) layers (∼3.5 µm in thickness); such films were then cross-linked by means of a water-soluble carbodiimide (EDC) at different degrees. The amount of BMP-2 loaded in these films was tuned (ranging from 1.4 to 14.3 µg/cm2) depending on the cross-linking extent of the film and of the BMP-2 initial concentration. Because packaging, and storage of the devices are important issues that may limit a wide application of biologically functionalised materials, we assessed in the present study the osteoinductive performance of the BMP-2 loaded PEM coatings onto custom-made 3D porous scaffolds made of Ti-6Al-4V in vitro and in vivo pertinent to long-term storage in a dry state and to sterilization by gamma irradiation. Analysis of PEM films by infrared spectroscopy evidenced that the air-dried films were stable for at least one year of storage at 4°C and they resisted exposure to γ-irradiation at clinically approved doses. The preservation of the growth factor bioactivity was evaluated both in vitro (using C2C12 cell model) and in vivo (in a rat ectopic model). In vitro, BMP-2 loaded in dried PEM films exhibited shelf-life stability at 4°C over a one-year period. However, its bioactivity decreased from 50 to 80% after γ-irradiation at 25 and 50 kGy, respectively. Remarkably, the in vivo studies showed that the amount of new bone tissue formation induced by BMP-2 contained in PEM-coated Ti implants was not affected after air-drying of the implants and sterilization at 25 kGy indicating the full preservation of the growth factor bioactivity. Altogether, our results provided evidence of the remarkable property of PEM film coatings that both sequester BMP-2 and preserve its full in vivo osteoinductive potential upon both storage and γ-sterilization. The protective effects of PEM films on the growth factor bioactivity may be attributed to both the high water content in (PLL/HA) films (∼90%) and to their porosity, which may provide a “protein-friendly” environment similar to the natural extracellular matrix. This novel “off-the-shelf” technology of functionalised implants opens promising applications in prosthetic and tissue engineering fields.Summary
Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion
Proximal humeral shaft fractures are commonly treated with long straight locking plates endangering the radial nerve distally. The aim of this study was to investigate the biomechanical competence in a human cadaveric bone model of 90°-helical PHILOS plates versus conventional straight PHILOS plates in proximal third comminuted humeral shaft fractures. Eight pairs of humeral cadaveric humeri were instrumented using either a long 90°-helical plate (group1) or a straight long PHILOS plate (group2). An unstable proximal humeral shaft fracture was simulated by means of an osteotomy maintaining a gap of 5cm. All specimens were tested under quasi-static loading in axial compression, internal and external rotation as well as bending in 4 directions. Subsequently, progressively increasing internal rotational loading until failure was applied and interfragmentary movements were monitored by means of optical motion tracking. Flexion/extension deformation (°) in group1 was (2.00±1.77) and (0.88±1.12) in group2, p=0.003. Varus/valgus deformation (°) was (6.14±1.58) in group1 and (6.16±0.73) in group2, p=0.976. Shear (mm) and displacement (°) under torsional load were (1.40±0.63 and 8.96±0.46) in group1 and (1.12±0.61 and 9.02±0.48) in group2, p≥0.390. However, during cyclic testing shear and torsional displacements and torsion were both significantly higher in group 1, p≤0.038. Cycles to catastrophic failure were (9960±1967) in group1 and (9234±1566) in group2, p=0.24. Although 90°-helical plating was associated with improved
7–20 % of the patients with a total knee arthroplasty (TKA) are dissatisfied without an indication for revision. Therapeutic options for this patient population with mostly a lack of quadriceps strength are limited. The purpose of this study is to evaluate the effect of six weeks low load
To date, few studies have investigated the feasibility of the loop-mediated isothermal amplification (LAMP) assay for identifying pathogens in tissue samples. This study aimed to investigate the feasibility of LAMP for the rapid detection of methicillin-susceptible or methicillin-resistant Staphylococcus aureus (MSSA or MRSA) in tissue samples, using a bead-beating DNA extraction method. Twenty tissue samples infected with either MSSA (n = 10) or MRSA (n = 10) were obtained from patients who underwent orthopedic surgery for suspected musculoskeletal infection between December 2019 and September 2020. DNA was extracted from the infected tissue samples using the bead-beating method. A multiplex LAMP assay was conducted to identify MSSA and MRSA infections. To recognize the Staphylococcus genus, S. aureus, and methicillin
Prosthetic Joint Infection (PJI) is a devastating complication that can occur after total joint replacement surgery. With increasing antimicrobial
As high incidences of tendinopathies are observed particularly in those who intensively use their tendons, we assume that pathological changes are caused, at least partially, by mechanical overload. This has led to the so-called overload hypothesis, explaining the development of tendinopathies by structural failure resulting from excessive load. At the same time, tendon loading is an important part in tendon rehabilitation. Currently, exercise treatment approaches such as eccentric training or heavy load