Aim: To compare results of hemi arthroplasty (Aequalis) and
Reverse total shoulder arthroplasty (RTSA) has improved the lives of many patients with complex shoulder pathology including rotator cuff arthropathy, glenoid bone defects, post-traumatic arthritis and failed non-constrained total shoulder arthroplasty. However, this non-anatomic replacement has a very different complication profile than has been observed with non-constrained shoulder arthroplasty and the revision of RTSA can be extremely challenging. The purpose of this talk is to review some of the typical complications observed in RTSA including instability, infection, stress fractures, peri-prosthetic fractures and glenoid failures, and discuss the treatment options for dealing with these difficult problems.
A reverse shoulder arthroplasty has become increasingly common for the treatment of proximal humerus fractures. A reverse shoulder arthroplasty is indicated especially in older and osteopenic individuals in whom the osteopenia, fracture type or comminution precludes fixation. However, there are many other ways to treat proximal humerus fractures and many of these are appropriate for different indications. Percutaneous pinning remains an option in certain surgical neck or valgus impacted proximal humerus fractures with minimal or no comminution at the medial calcar. In general, a fracture that is amenable to open reduction and fixation should be fixed. Open reduction and internal fixation should be the gold standard treatment for three-part fractures in younger and middle-aged patients. Four-part fractures should also be fixed in younger patients. Hemiarthroplasty results are less predictable as they are very dependent on tuberosity healing. While a reverse shoulder replacement may be considered in patients with severe comorbidities, patients always have better outcomes in the setting of an appropriately reduced and stably fixed proximal humerus fracture.
We investigated the functional outcome in patients
who underwent reverse shoulder replacement (RSR) after removal of
a tumour of the proximal humerus. A total of 16 patients (ten women
and six men) underwent this procedure between 1998 and 2011 in our
hospital. Five patients died and one was lost to follow-up. Ten
patients were available for review at a mean follow-up of 46 months
(12 to 136). Eight patients had a primary and two patients a secondary
bone tumour. At final follow up the mean range of active movement was: abduction
78° (30° to 150°); flexion 98° (45° to 180°); external rotation
32° (10° to 60°); internal rotation 51° (10° to 80°). The mean Musculoskeletal
Tumor Society score was 77% (60% to 90%) and the mean Toronto Extremity
Salvage Score was 70% (30% to 91%). Two patients had a superficial
infection and one had a deep infection and underwent a two-stage
revision procedure. In two patients there was loosening of the RSR;
one dislocated twice. All patients had some degree of atrophy or
pseudo-atrophy of the deltoid muscle. Use of a RSR in patients with a tumour of the proximal humerus
gives acceptable results. Cite this article:
There is a large and growing population of patients with shoulder arthritis that are over 70 years old. Many of these patients live alone and sling immobilization after shoulder arthroplasty is problematic. Other than improved internal rotation, there are limited benefits of anatomic shoulder arthroplasty compared to
The 2021 Australian Orthopaedic Association National Joint Replacement Registry report indicated that total shoulder replacement using both mid head (TMH) length humeral components and
Durable humeral component fixation in shoulder arthroplasty is necessary to prevent painful aseptic loosening and resultant humeral bone loss. Causes of humeral component loosening include stem design and material, stem length and geometry, ingrowth vs. ongrowth surfaces, quality of bone available for fixation, glenoid polyethylene debris osteolysis, exclusion of articular particulate debris, joint stability, rotator cuff function, and patient activity levels. Fixation of the humeral component may be achieved by cement fixation either partial or complete and press-fit fixation. During the past two decades, uncemented humeral fixation has become more popular, especially with short stems and stemless press fit designs. Cemented humeral component fixation risks difficult and complicated revision surgery, stress shielding of the tuberosities and humeral shaft periprosthetic fractures at the junction of the stiff cemented stem and the remaining humeral shaft. Press fit fixation may minimise these cemented risks but has potential for stem loosening. A randomised clinical trial of 161 patients with cemented vs. press fit anatomic total shoulder replacements found that cemented fixation of the humeral component provided better quality of life, strength, and range of motion than uncemented fixation but longer operative times. Another study found increased humeral osteolysis (43%) associated with glenoid component loosening and polyethylene wear, while stress shielding was seen with well-fixed press fit humeral components. During
Lateralization of the
Severe glenoid bone loss in patients with osteoarthritis with intact rotator cuff is associated with posterior glenoid bone loss and posterior humeral subluxation. Management of severe glenoid bone loss during shoulder arthroplasty is controversial and technically challenging and options range from humeral hemiarthroplasty, anatomic shoulder replacement with glenoid bone grafting or augmented glenoid component implantation, to
We present a series of 18 consecutive cases of primary reverse total shoulder arthroplasty for irreparable proximal humerus fractures in patients over 70. Failure of tuberosity union and poor cuff function leads to unsatisfactory results in over half the patients with hemiarthroplasty. Reverse total shoulder arthroplasty does not depend upon a functional rotator cuff and requires little formal rehabilitation. Patients over 70 with irreparable proximal humerus fractures treated with a reverse total shoulder arthroplasty were included in this study. Only primary arthroplasties were included.
The concept of non-anatomic
Glenoid bone loss is not an uncommon challenge in both primary shoulder arthroplasty surgery and revision surgery. Walch described the classification of glenoid morphology and this has led to an understanding of the expanded role for bone grafting, patient-specific implants and reverse prostheses. While bone grafting of the glenoid in conventional arthroplasty has been shown to be successful in some patients it is more routinely used in combination with reverse prostheses. More recently, augmented glenoid components have been developed for both conventional and
Introduction. Acromial and scapular fractures are a rare but difficult complication with reverse total shoulder arthroplasty (rTSA), with an incidence rate reported from 1–10%. The risk factors associated with these fractures types is largely unknown. The goal of this study is to analyze the clinical outcomes, demographic and comorbidity data, and implant sizing and surgical technique information from 4125 patients who received a primary rTSA with one specific prosthesis (Equinoxe, Exactech, Inc) and were sorted based on the radiographic documentation of an acromial and/or scapula fracture (ASF) to identify factors associated with this complication. Methods. 4125 patients (2652F/1441M/32 unspecified; mean age: 72.5yrs) were treated with primary rTSA by 23 orthopaedic surgeons. Revision and fracture
Experience has demonstrated in the hip and knee, related to total joint replacement arthroplasty, polymethyl methacrylate cement fixation can provide problems in terms of loosening, fragmentation, particulate wear and ultimate failure. These same problems have been recognised in total shoulder arthroplasty related to cement fixation of the glenoid. While cement fixation of the humeral component has proven much less problematic, there has been a swelling towards avoidance of using cement to secure the humeral component for fear of difficulty if revision is required. Surprisingly, with the high incidence of lucent lines, bone resorption and frank loosening, representing the most common source of failure in total shoulder arthroplasty, cementless fixation of the glenoid has not been, until now, embraced. The advent of reverse total shoulder arthroplasty has demonstrated the ability for secure cementless fixation to provide long-lasting secure implant retention in implants which have inherently higher shear and stress forces passing through the implant/bone interface. In anatomic total shoulder arthroplasty a woven tantalum anchor (Trabecular Metal) has proven to demonstrate secure cementless fixation as well. This presentation will discuss the use of trabecular metal anchored glenoid implants with and without additional screw fixation for anatomic and convertible
Proximal humeral fractures are the third most common fracture among the elderly. Complications associated with fixation include screw perforation, varus collapse, and avascular necrosis of the humeral head. To address these challenges, various augmentation techniques to increase medial column support have been developed. There are currently no recent studies that definitively establish the superiority of augmented fixation over non-augmented implants in the surgical treatment of proximal humeral fractures. The aim of this systematic review and meta-analysis was to compare the outcomes of patients who underwent locking-plate fixation with cement augmentation or bone-graft augmentation versus those who underwent locking-plate fixation without augmentation for proximal humeral fractures. The search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Articles involving patients with complex proximal humeral fractures treated using open reduction with locking-plate fixation, with or without augmentation, were considered. A meta-analysis of comparative studies comparing locking-plate fixation with cement augmentation or with bone-graft augmentation versus locking-plate fixation without augmentation was performed.Aims
Methods
Before reverse shoulder replacement was an option for rotator cuff tear arthropathy the treatment modalities were limited to injections and physical therapy for pain control, arthroscopic debridement with or without biceps tenodesis/tenotomy and hemiarthroplasty. Functional improvement was limited with these treatment options and success for pain control was moderate at best. The destructive nature of the rotator cuff deficient shoulder continued with medialization of the glenoid and erosion of the acromion seen even after replacement with hemiarthroplasty. The end result usually left the patient with a pseudo paralysis of the shoulder region functionally and uncontrolled pain that made later revision with a reverse implant difficult or impossible.
Is there an optimal way to place a glenoid in reverse total shoulder arthroplasty (RTSA)? Four of the six parameters that a surgeon can control in a RTSA involve the glenoid. The parameters are: inferior tilt, increased lateral or inferior offset and increased glenosphere diameter. The theoretical challenges are further complicated by the normal variations that exist in the bony anatomy of the scapula and pathological abnormalities prevalent in as many as 40% of patients undergoing RTSA. Over the last 5 years there has been a growing body of data and study on the biomechanics, clinical outcomes and complications of this prosthesis. What have we learned? How does a surgeon incorporate this into their practice? The goal of this talk is to briefly review the current status of biomechanics on the impact of glenosphere positioning and offset on the outcome of
The April 2023 Shoulder & Elbow Roundup360 looks at: Arthroscopic Bankart repair in athletes: in it for the long run?; Functional outcomes and the Wrightington classification of elbow fracture-dislocations; Hemiarthroplasty or ORIF intra-articular distal humerus fractures in older patients; Return to sport after total shoulder arthroplasty and hemiarthroplasty; Readmissions after shoulder arthroplasty; Arthroscopic Bankart repair in the longer term; Bankart repair with(out) remplissage or the Latarjet procedure? A systematic review and meta-analysis; Regaining motion among patients with shoulder pathology: are all exercises equal?
The February 2024 Shoulder & Elbow Roundup360 looks at: Does indomethacin prevent heterotopic ossification following elbow fracture fixation?; Arthroscopic capsular shift in atraumatic shoulder joint instability; Ultrasound-guided lavage with corticosteroid injection versus sham; Combined surgical and exercise-based interventions following primary traumatic anterior shoulder dislocation: a systematic review and meta-analysis; Are vascularized fibula autografts a long-lasting reconstruction after intercalary resection of the humerus for primary bone tumours?; Anatomical versus reverse total shoulder arthroplasty with limited forward elevation; Tension band or plate fixation for simple displaced olecranon fractures?; Is long-term follow-up and monitoring in shoulder and elbow arthroplasty needed?
A primary goal of shoulder arthroplasty is to place the components in anatomic version. However, traditional instrumentation does not accommodate glenoid wear patterns. Therefore, many investigators have attempted to use computer modeling or CT-based algorithms to create custom targeting guides to achieve this goal. There are some recent studies investigating the use of custom guides. Iannotti et al. published in JBJS-American in 2012 on the use of patient specific instrumentation. There were 31 patients included in the study. The authors found that the planning software and patient specific instrumentation were helpful overall, but particularly of benefit in patients with retroversion in excess of 16 degrees. In this group of patients, the mean deviation was 10 degrees in the standard surgical group and 1.2 degrees in the patient specific instrumentation group. Throckmorton presented a study at the AAOS in 2014 on 70 cadaveric shoulders. There was one high volume surgeon (>100 shoulder arthroplasties a year), two middle volume surgeons (20–50 shoulder arthroplasties a year), and two low volume surgeons (less than 20 shoulder arthroplasties per year). Overall, the custom guide was significantly more accurate than standard instrumentation. The custom guides were found to be especially more accurate among specimens with associated glenoid wear. There were no strong trends to indicate consistent differences between high, medium, and low volume surgeons. The authors concluded that custom guides have narrower standard deviation and fewer significant errors than standard instrumentation. Custom guides continue to evolve for use in shoulder arthroplasty including some guides that allow the surgeon to decide intra-operatively between anatomic shoulder arthroplasty and