The treatment of fracture accompanied with bone defect remains a challenge in skeletal surgery. For bone defect, we have to give a material to support healing process. Some material is allograft given at second to sixth weeks to avoid osteoclastic activity. We try to give primary allograft and to prevent osteoclastic activity we use risedronat.
Purpose. In 2010, the new clinical guideline of Osteoporosis Canada for the diagnosis of osteoporosis, clearly indicates that patients with high-risk of fracture are those that have already sustained a fracture (osteoporotic fracture). Until now, only 12% of the 3,400 fractures that we treat each year receive a treatment for osteoporosis. We are validating an evaluation protocol and a multidisciplinary systematic follow-up approach for osteoporosis. Patients are managed by a clinical nurse specialist. We are recruiting 543 patients with an osteoporotic fracture at Hal du Sacré-Coeur de Montréal. We aim to evaluate: 1) the incidence of a second osteoporotic fracture, 2) the initiation of a treatment and determine the compliance and adherence to treatment and 3) the evaluation of CTX-1 and Osteocalcin at Baseline, 6, 12,18 et 24 months (treatment efficacy) and 4) the functional outcome and quality of life post-fracture. Method. We've enrolled 153 subjects (men and women) over 40 years of age who were treated for an osteoporotic fracture at the orthopaedic clinic of Hal du Sacré-Coeur de Montréal. After starting a treatment protocol for osteoporosis, the subjects will be followed for a 24 months period at different time intervals. During these visits, they fill up functional outcome questionnaires, undergo physical exam, blood test, x rays and their compliance to treatment is evaluated. Results. Mean patients age was 65 y.o (+ 13). Two hundred seventeen patients were approached and 153 patients were enrolled (23 men and 130 women). Eleven patients refused to be part of the systematic follow up because they were satisfied with their family doctors osteoporosis management. Fifty-three were explained treatment and follow up and refused to participate. Thirteen patients (9%) dropped out after six months. One patient died. Twenty-one patients (13.7%) were already on bisphosphonates and 53 pts (34.6 %) had already sustained a fragility fracture. All patients were prescribed
Emerging evidence has linked the long-term use of alendronate (fosamax) with subtrochanteric insufficiency fractures. However, findings to date have been anecdotal. The aims of this study were to determine the incidence of subtrochanteric insufficiency fractures and identify whether they were more prevalent following the introduction of alendronate in Australia. All patients that presented between January 2007 and February 2009 with low- energy subtrochanteric fracture were identified. Similar data were collected between January 1995 and February 1997 as this was immediately prior to introduction of alendronate in Australia. The radiographs were examined for failure due to pre- existing insufficiency fracture. Characteristic findings were a transverse fracture line on the tension side of the femur with lateral cortical thickening immediately adjacent to the fracture. Relevant details from the history were recorded. We also separately identified all patients that presented between 2007 and 2009 with a proximal femoral fracture and determined the proportion taking alendronate. One hundred and seventeen patients with low-energy subtrochanteric fracture were included. Seventy-nine patients presented between 2007 and 2009 and 38 presented between 1995 and 1997. Forty-one of the 79 (52%) patients were identified as having radiograph findings suggestive of underlying insufficiency fracture, whilst none were identified prior to the introduction of alendronate. Of the 41 patients with subtrochanteric insufficiency fracture, 40 (98%) had been taking alendronate and one had been taking