Advertisement for orthosearch.org.uk
Results 1 - 17 of 17
Results per page:
Bone & Joint Research
Vol. 10, Issue 1 | Pages 22 - 30
1 Jan 2021
Clement ND Gaston P Bell A Simpson P Macpherson G Hamilton DF Patton JT

Aims

The primary aim of this study was to compare the hip-specific functional outcome of robotic assisted total hip arthroplasty (rTHA) with manual total hip arthroplasty (mTHA) in patients with osteoarthritis (OA). Secondary aims were to compare general health improvement, patient satisfaction, and radiological component position and restoration of leg length between rTHA and mTHA.

Methods

A total of 40 patients undergoing rTHA were propensity score matched to 80 patients undergoing mTHA for OA. Patients were matched for age, sex, and preoperative function. The Oxford Hip Score (OHS), Forgotten Joint Score (FJS), and EuroQol five-dimension questionnaire (EQ-5D) were collected pre- and postoperatively (mean 10 months (SD 2.2) in rTHA group and 12 months (SD 0.3) in mTHA group). In addition, patient satisfaction was collected postoperatively. Component accuracy was assessed using Lewinnek and Callanan safe zones, and restoration of leg length were assessed radiologically.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 34 - 34
1 Apr 2022
Gowda S Whitehouse S Morton R Panteli M Charity J Wilson M Timperley J Hubble M Howell J Kassam A
Full Access

The MAKO Robotic arm is a haptic robotic system that can be used to optimise performance during total hip arthroplasty (THA). We present the outcome of the first 40 robotic cases performed in an NHS foundation trust along with the technique of performing robotic THA in our unit. Forty consecutive patients undergoing robotic THA (rTHA) were compared to a case matched group of patients undergoing manual THA (m-THA). 2:1 blinded case matching was performed for age, sex, implants used (Trident uncemented socket and cemented Exeter stem, Stryker Mahwah, NJ, US) and surgeon grade. Comparisons were made for radiological positioning of implants, including leg length assessment, and patient reported functional outcome (PROMS). Pre- and post-operative radiographs were independently analysed by 2 authors. All patients underwent THA for a primary diagnosis of osteoarthritis. No significant difference between groups was identified for post-operative leg length discrepancy (LLD) although pre-operatively a significantly higher LLD was highlighted on the MAKO group, likely due to patient selection. Significantly lower post-operative socket version was identified in the MAKO cohort although no difference in post-operative cup inclination was noted. However, there was significantly larger variance in post-op LLD (p=0.024), cup version (p=0.004) and inclination (p=0.05) between groups indicating r-THA was significantly less variable (Levene's test for homogeneity of variance). There was no significant difference in the number of cases outside of Lewinnek's ‘safe’ zone for inclination (p=0.469), however, there were significantly more cases outside Lewinnek's ‘safe’ zone for version (12.5% vs 40.3%, p=0.002) in the m-THA group. We report the commencement of performance of MAKO robotic THA in an NHS institution. No problems with surgery were reported during our learning curve. Robotic THA cases had less variability in terms of implant positioning suggesting that the MAKO robot allows more accurate, less variable implant positioning with fewer outliers. Longer term follow-up of more cases is needed to identify whether this improved implant positioning has an effect on outcomes, but the initial results seem promising


Robotic assisted surgery aims to reduce surgical errors in implant positioning and better restore native hip biomechanics compared to conventional techniques for total hip arthroplasty (THA). The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual THA versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, cup inclination, cup version, and leg-length correction. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. All operative procedures were undertaken by a single surgeon using the minimally-invasive posterior approach. Two independent blinded observers recoded all radiological outcomes of interest using plain radiographs. Patients in both treatment groups were well-matched for age, gender, body mass index, laterality of surgery, and ASA scores. Interclass correlation coefficient was 0.92 (95% CI: 0.84 – 0.95) for intra-observer agreement and 0.88 (95% CI: 0.82–0.94) for inter-observer agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p<0.001) and vertical (p<0.001) centres of rotation, and improved preservation of the patient's native combined offset (P<0.001) compared to conventional THA. Robotic THA improved accuracy in positioning of the acetabular cup within the combined safe zones of inclination and anteversion described by Lewinnek et al (p=0.02) and Callanan et al (p=0.01) compared to conventional THA (figures 1–2). There was no difference between the two treatment groups in achieving the planned leg-length correction (p=0.10). Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular cup positioning within the safe zones of inclination and anteversion compared to conventional manual THA. Robotic-arm assisted THA enables improved preservation of native hip biomechanics compared to conventional manual THA. For any figures or tables, please contact authors directly: . fsh@fareshaddad.net


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 44 - 44
1 Nov 2021
Zhou Y
Full Access

With the approval of our institute, we reviewed all the robot-assisted hip revision during October 2019 and August 2021. MAKO joint arthroplasty system was used to perform the hip revision surgery.

Seventy-one robot-assisted hip revision cases were included. Cup revisions were carried out in 68 patients while stem revisions were also carried out in 68 patients. Three types of registration techniques (extra acetabular bone surface based, liner based, metal shell based or cage surface based) on the acetabular side. The extra acetabular bone surface was the commonest used for registration (48/70, 68.6%, mean accuracy 0.37mm), followed by liner surface (11/70, 15.7%, mean accuracy 0.36mm), acetabulum cup (10/70, 14.3%, mean accuracy 0.37mm), and cage surface (1/70, 1.4%, accuracy 0.40mm). We succeeded cup registration and robotic arm guided cup insertion in all the cases. The average cup inclination and anteversion after revision were 40.87°±4.39° and 13.87°±4.24°, respectively. Cups in 62 cases (62/68, 91.2%) were within the Lewinnek safe zone while in 55 cases (55/68, 80.9%) were within the Callanan safe zone.

The Mako robot-assisted system could bring favorable cup reconstruction in hip revision with acceptable surgical time and blood loss. Accurate registration could be achieved by different methods.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 56 - 56
23 Jun 2023
Sugano N Maeda Y Fuji H Tamura K Nakamura N Takashima K Uemura K Hamada H
Full Access

The purposes of this study were to report the accuracy of stem anteversion for Exeter cemented stems with the Mako hip enhanced mode and to compare it to Accolade cementless stems.

We reviewed the data of 25 hips in 20 patients who underwent THA through the posterior approach with Exeter stems and 25 hips in 19 patients with Accolade stems were matched for age, gender, height, weight, disease, and approaches. There was no difference in the target stem anteversion (20°–30°) between the groups. Two weeks after surgery, CT images were taken to measure stem anteversion.

The difference in stem anteversion between the plan and the postoperative CT measurements was 1.2° ± 3.8° (SD) on average with cemented stems and 4.2° ± 4.2° with cementless stems, respectively (P <0.05). The difference in stem anteversion between the intraoperative measurements and the postoperative CT measurements was 0.75° ± 1.8° with Exeter stems and 2.2° ± 2.3° with Accolade stems, respectively (P <0.05).

This study demonstrated a high precision of anteversion for Exeter cemented stems with the Mako enhanced mode and its clinical accuracy was better with the cemented stems than that with the cementless stems. Although intraoperative stem anteversion measurements with the Mako system were more accurate with the cemented stems than that with the cementless stem, the difference was about 1° and the accuracy of intra-operative anteversion measurements was quite high even with the cementless stems. The smaller difference in stem anteversion between the plan and postoperative measurements with the cemented stems suggested that stem anteversion control was easier with cemented stems under the Mako enhanced mode than that with cementless stems.

Intraoperative stem anteversion measurement with Mako total hip enhanced mode was accurate and it was useful in controlling cemented stem anteversion to the target angle.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 36 - 36
2 May 2024
Jones R Phillips J Panteli M
Full Access

Total joint arthroplasty (TJA) is one of the commonest and most successful orthopaedic procedures used for the management of end-stage arthritis. With the recent introduction of robotic-assisted joint replacement, Computed tomography (CT) has become part of required pre-operative planning.

The aim of this study is to quantify and characterise incidental CT findings, their clinical significance, and their effect on the planned joint arthroplasty.

All consecutive patients undergoing an elective TJA (total joint arthroplasty; hip or knee) were retrospectively identified, over a 4-year period (December 2019 and November 2023). Data documented and analysed included patient demographics, type of joint arthroplasty, CT findings, their clinical significance, as well as potential delays to the planned arthroplasty because of these findings and subsequent further investigation.

A total of 987 patients (female: 514 patients (52.1%)) undergoing TJA were identified (THA: 444 patients (45.0%); TKA: 400 patients (40.5%); UKA: 143 patients (14.5%)). Incidental findings within imaged areas were identified in 227 patients (23.0%). Of these findings, 74 (7.5%) were significant, requiring further investigation or management, 40 (4.1%) of which represented potential malignancy and 4 (0.4%) resulting in a new cancer diagnosis. A single patient was found to have an aneurysm requiring urgent vascular intervention. Surgery was delayed for further investigation in 4 patients (0.4%). Significant findings were more frequent in THA patients (THA: 43 (9.7%) TKA/UKA: 31 (5.7%)

Within our cohort, 74 (7.5%) patients had significant incidental findings that required further investigations or management, with 4 (0.4%) having a previously undiagnosed malignancy. We strongly advocate that all robotic arthroplasty planning CTs are reviewed and reported by a specialist, to avoid missing undiagnosed malignancies and other significant diagnoses.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 30 - 30
19 Aug 2024
Timperley AJ
Full Access

The SPAIRE technique (Saving Piriformis And Internus, Repair Externus) was first described in 2016 and an approach to the hip in the interval between the inferior gemellus and quadratus femoris can be used for both hemi- and total hip arthroplasty.

The HemiSPAIRE technique in hip hemiarthroplasty for displaced intracapsular fractures has been compared with the standard lateral approach (advocated by NICE) in a pragmatic, superiority, multicentre, randomised controlled trial into postoperative mobility and function. This NIHR funded study was recruited between November 2019 and April 2022 and the results are reported in this presentation.

The author has used the SPAIRE technique in 1026 routine primary total hip replacements since February 2016. The technique is described along with results from NJR data.

SPAIRE is most challenging in patients with small anatomy, reduced offset, with an external rotation deformity. Particularly in these, but in all cases, MAKO robotic assistance facilitates accurate implantation of prostheses and precise recreation of biomechanics. The MAKO robot has been used in all cases since 2018 and SPAIRE/MAKO is now the standard of care in the author's practice.

To evaluate whether robotic-assisted tendon-sparing posterior approaches (piriformis sparing and SPAIRE), improve patient outcomes in total hip arthroplasty compared with a robotic-assisted standard posterior approach, the NIHR Efficacy and Mechanism Evaluation Programme has recently funded the HIPSTER trial (HIP Surgical Techniques to Enhance Rehabilitation). This is a single-centre, double-blinded, parallel three-arm, randomised, controlled, superiority trial; recruitment is in progress.

The greatest value of robotic assistance may be when it is used in combination with tendon-sparing surgery. Data is being gathered to evaluate whether the SPAIRE/MAKO technique confers benefits with regard the speed of post-op mobilisation as well as accelerated return to unrestricted function.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 45 - 45
1 Nov 2021
Sugano N Hamada H Takao M Ando W Uemura K Nakamura N
Full Access

The purposes of this study were to evaluate the accuracy and feasibility of a robotic preparation for acetabular metal augments in patients with developmental dysplasia of the hip (DDH). Mako robotic arm reaming was used in 7 DDH to prepare the bony cavities for both Trident PSL cups and Tritanium acetabular wedge augments in six hips with Crowe 2 or 3 DDH. In CT-based planning, a properly sized cup was placed in the original acetabulum, and the same sized cup was also placed to fit the superolateral acetabular defect. The coordinates of the planned positions of cup and augment were recorded to manage the robotic arm reaming. After registration of the patient's pelvis, robotic reaming was performed first for the augment, then, for the cup by changing the target position of reaming as planned. The accuracy of the cup and augment placement was assessed on postoperative CT. To evaluate the feasibility of the robotic procedure, the OR time and blood loss were compared with those of 13 patients who received the same cup and augment systems with a conventional technique. All procedures were done without fracture or fixation failure. There were no differences in OR time or blood loss between the two procedures. Postoperative CT measurements of the distance between the cup center and the augment sphere center showed less than 2mm difference from the Mako preoperative planning.

Although a longer time of follow up evaluation is mandatory, our robotic acetabular augment preparation technique is accurate and feasible.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 58 - 58
23 Jun 2023
Fontalis A The CS Plastow R Mancino F Haddad FS
Full Access

In-hospital length of stay (LOS) and discharge disposition following arthroplasty could act as surrogate measures for improvement in patient pathways, and have major cost saving implications for healthcare providers. With the ever-growing adoption of robotic technology in arthroplasty, we wished to evaluate its impact on LOS. The objectives of this study were to compare LOS and discharge disposition following robotic-arm assisted (RO THA) versus conventional technique Total Hip Arthroplasty (CO THA).

This large-scale, single institution study included patients of any age undergoing primary THA (N = 1,732) for any cause between May 2019 and January 2023. Data extracted included patient demographics, LOS, need for Post Anaesthesia Care Unit (PACU) admission, anaesthesia type, readmission within 30 days and discharge dispositions. Univariate and multivariate logistic regression models were also employed to identify factors and patient characteristics related to delayed discharge.

The median LOS in the RO THA group was 54 hours (34, 78) versus 60 (51, 100) in the CO THA group, p<0.001. Discharge disposition was comparable between the two groups. In the multivariate model, age, need for PACU admission, ASA score > 2, female gender, general anaesthesia and utilisation of the conventional technique were significantly associated with LOS > 2 days.

Our study showed that robotic-arm assistance was associated with a shorter LOS in patients undergoing primary THA and no difference in discharge destination. Our results suggest that robotic-arm assistance could be advantageous in partly addressing the upsurge of hip arthroplasty procedures and the concomitant health care burden; however, this needs to be corroborated by long-term cost effectiveness analyses and data from randomised controlled studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 57 - 57
23 Jun 2023
Konishi T Sato T Motomura G Hamai S Kawahara S Hara D Utsunomiya T Nakashima Y
Full Access

Accurate cup placement in total hip arthroplasty (THA) for the patients with developmental dysplasia of the hip (DDH) is one of the challenges due to distinctive bone deformity. Robotic-arm assisted system have been developed to improve the accuracy of implant placement. This study aimed to compare the accuracy of robotic-arm assisted (Robo-THA), CT-based navigated (Navi-THA), and manual (M-THA) cup position and orientation in THA for DDH.

A total of 285 patients (335 hips) including 202 M-THAs, 45 Navi-THAs, and 88 Robo-THA were analyzed. The choice of procedure followed the patient's preferences. Horizontal and vertical center of rotation (HCOR and VCOR) were measured for cup position, and radiographic inclination (RI) and anteversion (RA) were measured for cup orientation. The propensity score-matching was performed among three groups to compare the absolute error from the preoperative target position and angle.

Navi-THA showed significantly smaller absolute errors than M-THA in RI (3.6° and 5.4°) and RA (3.8° and 6.0°), however, there were no significant differences between them in HCOR (2.5 mm and 3.0 mm) or VCOR (2.2 mm and 2.6 mm). In contrast, Robo-THA showed significantly smaller absolute errors of cup position than both M-THA and Navi-THA (HCOR: 1.7 mm and 2.9 mm, vs. M-THA, 1.6 mm and 2.5 mm vs. Navi-THA, VCOR:1.7 mm and 2.4 mm, vs. M-THA, 1.4 mm and 2.2 mm vs. Navi-THA). Robo-THA also showed significantly smaller absolute errors of cup orientation than both M-THA and Navi-THA (RI: 1.4° and 5.7°, vs. M-THA, 1.5° and 3.6°, vs. Navi-THA, RA: 1.9° and 5.8° vs. M-THA, 2.1° and 3.8° vs. Navi-THA).

Robotic-arm assisted system showed more accurate cup position and orientation compared to manual and CT-based navigation in THA for DDH. CT-based navigation increased the accuracy of cup orientation compared to manual procedures, but not cup position.


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 11 - 18
1 Jan 2019
Kayani B Konan S Thakrar RR Huq SS Haddad FS

Objectives. The primary objective of this study was to compare accuracy in restoring the native centre of hip rotation in patients undergoing conventional manual total hip arthroplasty (THA) versus robotic-arm assisted THA. Secondary objectives were to determine differences between these treatment techniques for THA in achieving the planned combined offset, component inclination, component version, and leg-length correction. Materials and Methods. This prospective cohort study included 50 patients undergoing conventional manual THA and 25 patients receiving robotic-arm assisted THA. Patients undergoing conventional manual THA and robotic-arm assisted THA were well matched for age (mean age, 69.4 years (. sd. 5.2) vs 67.5 years (. sd. 5.8) (p = 0.25); body mass index (27.4 kg/m. 2. (. sd. 2.1) vs 26.9 kg/m. 2. (. sd. 2.2); p = 0.39); and laterality of surgery (right = 28, left = 22 vs right = 12, left = 13; p = 0.78). All operative procedures were undertaken by a single surgeon using the posterior approach. Two independent blinded observers recorded all radiological outcomes of interest using plain radiographs. Results. The correlation coefficient was 0.92 (95% confidence interval (CI) 0.88 to 0.95) for intraobserver agreement and 0.88 (95% CI 0.82 to 0.94) for interobserver agreement in all study outcomes. Robotic THA was associated with improved accuracy in restoring the native horizontal (p < 0.001) and vertical (p < 0.001) centres of rotation, and improved preservation of the patient’s native combined offset (p < 0.001) compared with conventional THA. Robotic THA improved accuracy in positioning of the acetabular component within the combined safe zones of inclination and anteversion described by Lewinnek et al (p = 0.02) and Callanan et al (p = 0.01) compared with conventional THA. There was no difference between the two treatment groups in achieving the planned leg-length correction (p = 0.10). Conclusion. Robotic-arm assisted THA was associated with improved accuracy in restoring the native centre of rotation, better preservation of the combined offset, and more precise acetabular component positioning within the safe zones of inclination and anteversion compared with conventional manual THA


Bone & Joint Open
Vol. 2, Issue 6 | Pages 365 - 370
1 Jun 2021
Kolodychuk N Su E Alexiades MM Ren R Ojard C Waddell BS

Aims. Traditionally, acetabular component insertion during total hip arthroplasty (THA) is visually assisted in the posterior approach and fluoroscopically assisted in the anterior approach. The present study examined the accuracy of a new surgeon during anterior (NSA) and posterior (NSP) THA using robotic arm-assisted technology compared to two experienced surgeons using traditional methods. Methods. Prospectively collected data was reviewed for 120 patients at two institutions. Data were collected on the first 30 anterior approach and the first 30 posterior approach surgeries performed by a newly graduated arthroplasty surgeon (all using robotic arm-assisted technology) and was compared to standard THA by an experienced anterior (SSA) and posterior surgeon (SSP). Acetabular component inclination, version, and leg length were calculated postoperatively and differences calculated based on postoperative film measurement. Results. Demographic data were similar between groups with the exception of BMI being lower in the NSA group (27.98 vs 25.2; p = 0.005). Operating time and total time in operating room (TTOR) was lower in the SSA (p < 0.001) and TTOR was higher in the NSP group (p = 0.014). Planned versus postoperative leg length discrepancy were similar among both anterior and posterior surgeries (p > 0.104). Planned versus postoperative abduction and anteversion were similar among the NSA and SSA (p > 0.425), whereas planned versus postoperative abduction and anteversion were lower in the NSP (p < 0.001). Outliers > 10 mm from planned leg length were present in one case of the SSP and NSP, with none in the anterior groups. There were no outliers > 10° in anterior or posterior for abduction in all surgeons. The SSP had six outliers > 10° in anteversion while the NSP had none (p = 0.004); the SSA had no outliers for anteversion while the NSA had one (p = 0.500). Conclusion. Robotic arm-assisted technology allowed a newly trained surgeon to produce similarly accurate results and outcomes as experienced surgeons in anterior and posterior hip arthroplasty. Cite this article: Bone Jt Open 2021;2(6):365–370


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims

The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system.

Methods

This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.


Bone & Joint Open
Vol. 6, Issue 1 | Pages 3 - 11
1 Jan 2025
Shimizu A Murakami S Tamai T Haga Y Kutsuna T Kinoshita T Takao M

Aims

Excellent outcomes have been reported following CT-based robotic arm-assisted total hip arthroplasty (rTHA) compared with manual THA; however, its superiority over CT-based navigation THA (nTHA) remains unclear. This study aimed to determine whether a CT-based robotic arm-assisted system helps surgeons perform accurate cup placement, minimizes leg length, and offsets discrepancies more than a CT-based navigation system.

Methods

We studied 60 hips from 54 patients who underwent rTHA between April 2021 and August 2023, and 45 hips from 44 patients who underwent nTHA between January 2020 and March 2021 with the same target cup orientation at the Department of Orthopedic Surgery at Ozu Memorial Hospital, Japan. After propensity score matching, each group had 37 hips. Postoperative acetabular component position and orientation were measured using the planning module of the CT-based navigation system. Postoperative leg length and offset discrepancies were evaluated using postoperative CT in patients who have unilateral hip osteoarthritis.


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims

Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane.

Methods

Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1488 - 1496
1 Sep 2021
Emara AK Zhou G Klika AK Koroukian SM Schiltz NK Higuera-Rueda CA Molloy RM Piuzzi NS

Aims

The current study aimed to compare robotic arm-assisted (RA-THA), computer-assisted (CA-THA), and manual (M-THA) total hip arthroplasty regarding in-hospital metrics including length of stay (LOS), discharge disposition, in-hospital complications, and cost of RA-THA versus M-THA and CA-THA versus M-THA, as well as trends in use and uptake over a ten-year period, and future projections of uptake and use of RA-THA and CA-THA.

Methods

The National Inpatient Sample was queried for primary THAs (2008 to 2017) which were categorized into RA-THA, CA-THA, and M-THA. Past and projected use, demographic characteristics distribution, income, type of insurance, location, and healthcare setting were compared among the three cohorts. In-hospital complications, LOS, discharge disposition, and in-hospital costs were compared between propensity score-matched cohorts of M-THA versus RA-THA and M-THA versus CA-THA to adjust for baseline characteristics and comorbidities.