Introduction. The low-contact stress (LCS) knee prosthesis is a mobile-bearing design with modifications to the tibial component that allow for meniscal-bearing (MB) or rotating-platform (RP). The MB design had nonconstrained anteroposterior and
The Step Holter is a software and mobile application that can be used to easily study gait analysis. The application can be downloaded for free on the App Store and Google Play Store for iOS and Android devices. The software can detect with an easy calibration the three planes to detect the movement of the gait. Before proceeding with the calibration, the smartphone can be placed and fixed with a band or stowed into a long sock with its top edge at the height of the joint line, in the medial side of the tibia. The calibration consists in bending the knee about 20 to 30 degrees and then making a
Introduction. Achieving high flexion after total knee arthroplasty (TKA) is one of the most important clinical results, especially in eastern countries where the high flexion activities, such as kneeling and squatting, are part of the important lifestyle. Numerous studies have examined the kinematics after TKA. However, there are few numbers of studies which examined the kinematics during deep knee flexion activities. Therefore, in the present study, we report analysis of mobile-bearing TKA kinematics from extension to deep flexion kneeling using 2D-3D image matching technique. Materials and Methods. The subjects were 16 knees of 8 consecutive patients (all women, average age 75.9), who underwent primary mobile-bearing PS TKA (P.F.C. sigma RP-F: Depuy Orthopedics Inc., Warsaw, IN, USA) between February 2007 and May 2008. All cases were osteoarthritis with varus deformity. Postoperative radiographs were taken at the position of extension, half-squatting and deep flexion kneeling 3 month after the surgery, and the degrees of internal rotation of the tibial component was measured by 2D-3D image matching technique. Pre- and post-operative ROM was recorded. Then, we compared the absolute value and relative movement of tibial internal rotation between extension, half-squatting and deep flexion kneeling, and evaluated the correlation of the ROM and the internal rotation. Results. The mean preoperative ROM was from -12 to 118 degrees. After the surgery, ROM was from -2 to 123 degrees. Clinical scores of all cases were significantly improved after surgery. Internal rotation of tibial component was -6.8 to 9.7 (mean, 1.7) degrees at half-squatting position, and -7.2 to 13.6 (mean; 1.9) degrees at kneeling position. There was no correlation between maximum flexion angle and tibial rotation during flexion. There was significant negative correlation between tibial internal rotation angle in extension and tibial
Conventional wisdom holds that aseptic failure of proximal ingrowth femoral stems should be addressed by revision to a longer femoral stem dependent upon more distal fixation. This is a reliable and time-honoured strategy with a high likelihood of success provided secure initial fixation of the revision stem is obtained. Yet, stems reliant upon more distal diaphyseal fixation are accompanied by a greater risk of physiologic thigh pain attributable to the differential in flexural stiffness of the femoral shaft compared with the prosthetic stem. Contemporary proximal ingrowth femoral stems have become the most popular device used in total hip arthroplasty and are traditionally reserved for primary procedures. Nevertheless, the flat tapered design offers a tight fit between the medial and lateral endosteal cortices of the femur, unimpeded by an increasing anteroposterior dimension of the stem, and provides a secure geometrical block to
Background. A navigation system is useful tool to evaluate the intraoperative knee kinematics. Rheumatoid arthritis (RA) patients often need to have TKA operation, however, there are few TKA kinematics studies comparing RA and Osteoarthritis (OA) patients. Objective. The purpose of this study was to evaluate intraoperative TKA kinematics, and to describe the difference of kinematics between RA and OA patients. Materials and methods. Seventy-four patients, 86 knees were included in this study. Unilateral posterior stabilized TKAs were performed (male 14, female 72, age 70 ± 1.1 years) using navigation system. Sixty-one knees had OA and 25 had RA. Evaluation items are coronal gaps, AP translation and rotation. Coronal gaps were defined as the distance between the femoral and tibial cut surface. Medial and lateral gaps are also measured. AP translation was defined as the sagittal movement between the center of femoral and tibial condyle. Rotation was defined as axial difference of axis between femur and tibia. All items were evaluated by navigation system at every 10 degrees of knee flexion from 0 degrees of extension to 140 degrees of deep flexion. Results. In extension range, mean medial joint gaps (RA / OA) were 22.5 / 21.6 mm at 0 degree and decreased to 17.3 /15.0mm at 40 degrees, respectively. They were significantly different at 40 degrees. Lateral joint gaps were 16.4, 15.5mm at zero degree and slightly decreased to 21.0 / 20.0 mm at 40 degrees. In flexion range, mean medial joint gaps were 17.3 / 17.2 mm, 20.9 / 21.6 mm and 34.9 / 37.3 mm at 50 / 90 mm and 140 degrees. Mean lateral joint gaps were 16.4 / 15.5 mm, 21.8 / 21.6 mm and 29.0 / 31.4 mm. Both gaps were increased as knee was bent deeply(see Figure 1). Regarding to AP translation, femoral component was once moved 6.5 / 6.1 mm forward up to 50 degrees, then moved 25.8 / 23.5 mm backward with flexion. There was no significant difference (see Figure 2). Rotation kinematics showed significant difference in early flexion range. Consecutive external rotation of femur was recognized in RA group, but internal rotation was occurred in OA group from 0 to 60 degrees. External rotation was recognized in both groups from 60 degrees to deep flexion (see Figure 3). Conclusion. In this study, although joint gaps and AP translation were almost similar between RA and OA, it became clear that most significant difference was
At present, wear investigations of total hip replacement (THR) are performed in accordance with the ISO standard 14242, which is based on empirically determined relative motion data and exclusively describes the gait cycle. However, besides continuous walking, a number of additional activities characterize the movement sequences in everyday life and influence the wear rates as well as the size and shape of wear debris. Disagreements of in vitro and in vivo wear mechanisms seemed to be a result of differences between in vitro and in vivo kinematics and dynamics. This requires an optimization of the current test procedures and parameters. Hence, the aim of the present study was to evaluate most frequent activities of daily living, based on available in vivo data, in order to generate parameter sets according to loading and rotational movements close to the physiological situation. For the generation of angular patterns, time-dependent three-dimensional trajectories of reference points were used from the HIP98 database of Bergmann. The data set was evaluated and interpolated using analytical techniques to simulate consecutive smooth motion cycles in hip wear simulators or further test devices. The calculated relative joint movement was expressed by an ordered set of three elementary rotations and was complemented with three force components of the joint contact force to generate kinematically and dynamically consistent parameter sets. The obtained sets included the activities walking, knee bending, stair climbing and a combined load case of sitting down and standing up for an averaged patient. Generated slide tracks, created by the use of the angular patterns, demonstrated differences according to the kinematics between selected daily life activities and those established for the ISO standard 14242. In particular, for the relative flexion-extension
Introduction. Shoulder motion results from a complex interaction between the interconnected segments of the shoulder girdle. Coordination is necessary for normal shoulder function and is achieved by synchronous and coordinated muscle activity. During rotational movements, the humeral head translates on the glenoid fossa in the anterior-posterior plane. Tension developed by the rotator cuff muscles compresses the humeral head into the glenoid fossa. This acts to limit the degree of humeral head translation and establishes a stable GH fulcrum about which the arm can be moved. Previous studies have been limited by the use of contrived movement protocols and muscular coordination has not been previously considered with regard to shoulder rotation movements. This study reports the activation profile and coordination of 13 muscles and 4 muscle groups during a dynamic
Total knee arthroplasty (TKA) is an exceptionally successful and robust treatment for disabling knee disease, but many efforts continue to improve patient postoperative satisfaction and performance. One approach to improving performance is to restore TKA motions closer to those in healthy knees. Based upon an idealized model of knee motions, it is possible to design tibiofemoral articulating surfaces to promote natural kinematics and force transfer (Fiedler et al., Acta Bioeng Biomech, 2011). Such an asymmetric design is expected to promote rollback in stance phase that continues through deeply flexed activities. The purpose of this study is twofold: (1) To determine if a TKA designed on a theoretical basis achieves the proposed motions in vivo, and (2) To track postoperative kinematic patterns with examinations at 6–12 weeks, 6 months and one year postoperatively. This paper reports results of the initial cohort that has completed 6–12 week and 6-month examinations. Eight patients, including 3 females, with unilateral TKA for varus osteoarthritis provided written informed consent prior to beginning the study. Patients averaged 66±9 years, 168±14cm, and 28±3 BMI. Patients performed three weightbearing activities observed using pulsed x-ray flat-panel imaging at 30Hz: stepping up from flexion to extension on a 20cm step, lunging to maximum flexion with the foot placed on a 20 cm step, and kneeling to maximum flexion with the shin placed on a padded support. Three-dimensional knee kinematics were quantified using model-image registration to determine flexion, tibial internal
Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femolo-tibial joint with use of CS polyethylene insert before and after PCL resction using computer assisted navigation system intra-operatively in TKA. Materials and Methods. Twenty-four consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using computer assisted navigation system. In all patients, difference between extension and flexion gap was under 3mm after bony cut of femur and tibia. During surgery, CS polyethylene tibial trial insert were inserted after trial implantation of femoral and tibial components, before and after resection of PCL, respectively. The kinematic parameters of the soft-tissue balance, and amount of coronal (valgus/varus), sagittal (anterior/posterior) and
Computer hexapod assisted orthopaedic surgery (CHAOS), is a method
to achieve the intra-operative correction of long bone deformities
using a hexapod external fixator before definitive internal fixation
with minimally invasive stabilisation techniques. The aims of this study were to determine the reliability of this
method in a consecutive case series of patients undergoing femoral
deformity correction, with a minimum six-month follow-up, to assess
the complications and to define the ideal group of patients for
whom this treatment is appropriate. The medical records and radiographs of all patients who underwent
CHAOS for femoral deformity at our institution between 2005 and
2011 were retrospectively reviewed. Records were available for all
55 consecutive procedures undertaken in 49 patients with a mean
age of 35.6 years (10.9 to 75.3) at the time of surgery.Aims
Patients and Methods