Objectives. This study aimed to examine the effects of SRT1720, a potent
Background. Resveratrol is a polyphenolic compound commonly found in the
skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated
by resveratrol and has been shown to promote longevity and boost
mitochondrial metabolism. We examined the effect of resveratrol
on normal and osteoarthritic (OA) human chondrocytes. Methods. Normal and OA chondrocytes were incubated with various concentrations
of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24,
48 or 72 hours or for six weeks. Cell proliferation, gene expression,
and senescence were evaluated. Results.
Chondrocyte dysfunction is attributable to the development of osteoarthritis (OA). Deregulation of chondrogenic regulators and deleterious factors, e.g. proteinases, Wnt signalling components, and autophagy repressors lowers chondrogenic activities and ultimately deteriorates cartilage homeostasis. Emerging evidence is that epigenetic pathways, including non-coding microRNAs and histone remodelling switch on/off the expression of joint-deleterious factors. MicroRNAs reduces the expressions of mRNAs through binding to the 3'-untranslation regions of targets. The levels of microRNAs, e.g. miR-29a, miR-128a in serum, synovial fluid, synovium, and cartilage are correlated with the occurrence of OA. Mice overexpressing/deficient microRNAs of interest show minor responses to OA progression. Besides, acetylation and methylation statuses of histones regulate the factors detrimental to chondrocytes through altering the interactions between histones and promoters. Histone deacetylases and demethylases, e.g. HDAC4,
The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known. In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.Objectives
Methods