Advertisement for orthosearch.org.uk
Results 1 - 20 of 58
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 83 - 83
1 Dec 2022
Bornes T Kubik J Klinger C Altintas B Dziadosz D Ricci W
Full Access

Tibial plateau fracture reduction involves restoration of alignment and articular congruity. Restorations of sagittal alignment (tibial slope) of medial and lateral condyles of the tibial plateau are independent of each other in the fracture setting. Limited independent assessment of medial and lateral tibial plateau sagittal alignment has been performed to date. Our objective was to characterize medial and lateral tibial slopes using fluoroscopy and to correlate X-ray and CT findings. Phase One: Eight cadaveric knees were mounted in extension. C-arm fluoroscopy was used to acquire an AP image and the C-arm was adjusted in the sagittal plane from 15° of cephalad tilt to 15 ° of caudad tilt with images captured at 0.5° increments. The “perfect AP” angle, defined as the angle that most accurately profiled the articular surface, was determined for medial and lateral condyles of each tibia by five surgeons. Given that it was agreed across surgeons that more than one angle provided an adequate profile of each compartment, a range of AP angles corresponding to adequate images was recorded. Phase Two: Perfect AP angles from Phase One were projected onto sagittal CT images in Horos software in the mid-medial compartment and mid-lateral compartment to determine the precise tangent subchondral anatomic structures seen on CT to serve as dominant bony landmarks in a protocol generated for calculating medial and lateral tibial slopes on CT. Phase Three: 46 additional cadaveric knees were imaged with CT. Tibial slopes were determined in all 54 specimens. Phase One: Based on the perfect AP angle on X-ray, the mean medial slope was 4.2°+/-2.6° posterior and mean lateral slope was 5.0°+/-3.8° posterior in eight knees. A range of AP angles was noted to adequately profile each compartment in all specimens and was noted to be wider in the lateral (3.9°+/-3.8°) than medial compartment (1.8°+/-0.7° p=0.002). Phase Two: In plateaus with a concave shape, the perfect AP angle on X-ray corresponded with a line between the superiormost edges of the anterior and posterior lips of the plateau on CT. In plateaus with a flat or convex shape, the perfect AP angle aligned with a tangent to the subchondral surface extending from center to posterior plateau on CT. Phase Three: Based on the CT protocol created in Phase Two, mean medial slope (5.2°+/-2.3° posterior) was significantly less than lateral slope (7.5°+/-3.0° posterior) in 54 knees (p<0.001). In individual specimens, the difference between medial and lateral slopes was variable, ranging from 6.8° more laterally to 3.1° more medially. In a paired comparison of right and left knees from the same cadaver, no differences were noted between sides (medial p=0.43; lateral p=0.62). On average there is slightly more tibial slope in the lateral plateau than medial plateau (2° greater). However, individual patients may have substantially more lateral slope (up to 6.8°) or even more medial slope (up to 3.1°). Since tibial slope was similar between contralateral limbs, evaluating slope on the uninjured side provides a template for sagittal plane reduction of tibial plateau fractures


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 23 - 23
1 Apr 2019
Garcia-Rey E Garcia-Cimbrelo E Carbonell R
Full Access

Background. Aseptic loosening is rare with most cementless tapered stems in primary total hip arthroplasty (THA), however different factors can modify results. We ask if the shape and technique of three current different femoral components affects the clinical and radiological outcome after a minimum follow-up of ten years. Methods. 889 cementless tapered stems implanted from 1999 to 2007 were prospectively followed. Group 1 (273 hips) shared a conical shape and a porous-coated surface, group 2 (286 hips) a conical splined shape and group 3 (330 hips) a rectangular stem. Clinical outcome and anteroposterior and sagittal radiographic analysis were compared. Femoral type, stem position, femoral canal filling at three levels and the possible appearance of loosening and bone remodelling changes were assessed. Results. No thigh pain was reported in unrevised patients. Mean Harris Hip score was lower for patients in group 3 for pain and function at 6 months, two years and at latest follow-up. The survival rate of not having revision of the stem for any cause was 98.5% (95% CI 98.8–100) for group 1 at 12 years, 99.3 % ((95% Confidence Intervals (CI) 97.9–100) for group 2 at 16 years and 97.7% (95% (CI) 94–100) for group 3 at 14 years, and (log rank= 0.109). Thirteen stems from the latter were revised for aseptic loosening. No revision for aseptic loosening was found in the other designs. After controlling all confounding factors, the risk for aseptic loosening in group 3 was related to a lower femoral canal filling (p=0.039, Hazard Ratio (HR):0.918, 95% Confidence Interval (CI):0.846–0.996) and a stem position outside neutral limits in the sagittal alignment (p=0.048, HR:3.581, 95% CI:1.010–12.696). Conclusions. Conical tapered cementless stems are more reliable than rectangular straight designs in primary THA after ten years


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 207 - 207
1 Sep 2012
Kukkar N Beck RT Mai MC Froelich JM Milbrandt JC Freitag P
Full Access

Purpose. A change in lumbar lordosis can affect the outcome following lumbar fusion, and intraoperative positioning is a prime determinant of the postoperative lordosis. The purpose of this study is to determine the change in lordosis and sacral slope (SS) following axial lumbar interbody fusion (AxiaLIF). Method. We retrospectively reviewed 81 patients who underwent a 360 lumbar interbody fusion at L4-5/L5-S1 (two-level procedure) or solely at L5-S1 (one-level) for degenerative disc disease and spondylolithesis utilizing the AxiaLIF with posterior segmental instrumentation. For the two-level procedures, 25 patients had the AxiaLIF placed first and 27 had pedicle screws placed first. For the one-level procedures, 11 patients had the AxiaLIF placed first and 18 had pedicle screws placed first. Standing lateral preoperative radiographs were compared to standing lateral postoperative films. Lumbar Cobb angles were measured at L1-S1, L4-S1 and individual lumbar levels. SS was measured for sacral version. Results. Of the 81 patients studied, 29 underwent one-level AxiaLIF, and 52 underwent two-level AxiaLIF. For the two-level population, there were statistically significant changes (P less than 0.05) in Cobb angles pre- vs. postoperative at the L4-S1, L2-3, and L4-5 levels, but none other. The percent lordosis from L4-S1 pre- vs. postoperative was also noted to be significant. The pre- vs. postoperative Cobb angle comparisons for the one-level population were not found to be significant. The percentages having a greater than or equal to 10 degree change in total lordosis and lordosis from L4-S1 in both one- and two-level groups were similar at ∼20%. There was no difference in either group in percentage having a greater than or equal to five degree change at individual lumbar segments although there was a trend at both L5-S1 and the SS towards less change with the pedicle screws placed first. Conclusion. A significant portion of both single and multilevel fusions with AxiaLIF had a statistically significant change at the L4-5 and L4-S1 levels. In general, there is a small decrease in lordosis at the bottom two segments and SS with reciprocal changes at the proximal levels. The percentage of total lordosis from the L4-S1 level decreased significantly in the multilevel group. Roussouly lordosis type three (well-balanced) was relatively protected from change in lordosis. Placing pedicle screws prior to placing the AxiaLIF in one- and two- level procedures may lead to an improved sagittal alignment. Further observation of this cohort will determine if the change in alignment will impact outcomes or accelerate adjacent level disease


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 42 - 42
1 Apr 2019
Kim YW Lazennec JY Hani J Pour AE
Full Access

Background

Postural change after total hip arthroplasty (THA) is still a matter of discussion. Previous studies have mainly concentrated on the pelvic motions. We report the postoperative changes of the global sagittal posture using pelvic, spinal and lower extremities parameters.

Methods

139 patients (primary THA, without previous spinal or lower extremity surgery) were included. We measured pelvic parameters [SS: Sacral Slope, PI: Pelvic Incidence, PT: Pelvic Tilt, APP angle: Anterior Pelvic Plane angle] and the global posture parameters (SVA: Sagittal Vertical Angle, GSA: Global Sagittal Angle, TPA: T1 pelvic angle). Patients were categorized into low PI group <45°, 45°< medium PI <65° and high PI >65°.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 47 - 47
1 Mar 2017
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction

Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1].

In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state.

The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment.

Methods

Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium).

The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane.

The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 28 - 28
23 Feb 2023
Boudali A Chai Y Farey J Vigdorchik J Walter W
Full Access

The spinopelvic alignment is often assessed via the Pelvic Incidence-Lumbar Lordosis (PI-LL) mismatch. Here we describe and validate a simplified method to evaluating the spinopelvic alignment through the L1-Pelvis angle (L1P). This method is set to reduce the operator error and make the on-film measurement more practicable.

126 standing lateral radiographs of patients presenting for Total Hip Arthroplasty were examined. Three operators were recruited to label 6 landmarks. One operator repeated the landmark selection for intra-operator analysis. We compare PI-LL mismatch obtained via the conventional method, and our simplified method where we estimate this mismatch using PI-LL = L1P - 90°. We also assess the method's reliability and repeatability.

We found no significant difference (p > 0.05) between the PI-LL mismatch from the conventional method (mean 0.22° ± 13.6) compared to L1P method (mean 0.0° ± 13.1). The overall average normalised root mean square error (NRMSE) for PI-LL mismatch across all operators is 7.53% (mean -3.3° ± 6.0) and 6.5% (mean -2.9° ± 4.9) for the conventional and L1P method, respectively. In relation to intra-operator repeatability, the correlation coefficients are 0.87 for PI, 0.94 for LL, and 0.96 for L1P. NRMSE between the two measurement sets are PI: 9.96%, LL: 5.97%, and L1P: 4.41%. A similar trend is observed in the absolute error between the two sets of measurements.

Results indicate an equivalence in PI-LL measurement between the methods. Reproducibility of the measurements and reliability between operators were improved. Using the L1P angle, the classification of the sagittal spinal deformity found in the literature translates to: normal L1P<100°, mild 100°<L1P<110°, and severe L1P>110°. Surgeons adopting our method should expect a small improvement in reliability and repeatability of their measurements, and a significant improvement of the assessment of the mismatch through the visualisation of the angle L1P.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 9 - 9
23 Apr 2024
Ramlawi AA McClure P Assayag M
Full Access

Introduction. The practice of limb lengthening using intramedullary nails has surged in popularity in recent years. Our study explores the relationship between femur lengthening and overall height gain in adults undergoing cosmetic limb lengthening with telescoping magnetic intramedullary lengthening nails (MILNs). Materials & Methods. Demographic information, pre- and postoperative radiographic data, and secondary outcomes, such as mechanical angles and sagittal alignment, were analyzed for 42 adult femurs MILNs (PRECICE 2, NuVasive, Inc.). Height was assessed with a digital stadiometer. Limb lengthening was defined as the amount of nail distraction seen on a calibrated weight bearing X-ray at consolidation. mLDFA, mMPTA, MAD, AMA, and femoral sagittal bow were evaluated as secondary outcomes. Results. Mean starting height was 163.5 cm (SD 10.4, range 137–179) Post -lengthening mean height increased to 171.1 cm (SD 10.1, range 146.7–185.3). Average height gain was 7.5 cm (SD 1.3 cm, range 5.1–9.5). Average femoral lengthening was 7.3 cm (SD 1.14, range 4.1–10.1). There were no statistically significant difference between height gain and femur lengthening. Secondary outcomes showed reductions in femoral sagittal bow and AMA. Conclusions. We conclude that measuring femur lengthening is a reliable and accurate method of measuring gained height in deformity-free patients undergoing limb lengthening. We further reason that straightening of both femoral and spinal sagittal bow counteracts potential lengthening loss over the anatomical axis, versus mechanical axis lengthening


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 13 - 13
1 Dec 2022
Nogaro M Bekmez S Tan Y Maguire B Camp M Narayanan U
Full Access

Over 500 supracondylar humerus fractures (SCHF) are treated at our institution each year. Our standard post-operative pathway includes a 3-week visit for splint removal, wire removal, and radiographs. Subsequent follow-up occurs at 12 weeks for a clinical examination. In an effort to minimize unnecessary follow-up visits, we investigated whether photographs and/or patient-reported outcome measure (PROM) scores could identify patients who do not need routine 3-month in-person follow-up. At the 3-month visit, 248 SCHF patients (mean 6.2 yrs; 0.75-11yrs) had bilateral elbow motion (ROM) and carrying angles measured; and photographs documenting frontal and sagittal alignment of both injured and uninjured upper extremities, in both maximum elbow flexion and extension. Two independent assessors made the same measurements off the clinical photographs to compare these with the clinical measurements. Two PROMs: Self-Assessment Questionnaire (SAQ: 0 best to 14 worst) and QuickDASH (0 best to 100 worst) were completed at the 3-month visit. Inter-rater reliability of the photograph measurements was excellent (Kappa: 0.88-0.93), but weakly concordant with clinical measurements (carrying angle Kappa=0.51;max flexion Kappa=0.68;max extension Kappa=0.64). SAQ moderately correlated with QuickDASH (Kappa=0.59) and performed better at identifying patients with abnormalities. SAQ score ≥ 4 identified patients meeting 3-month follow-up criteria, with sensitivity: 36.1%; specificity: 96.8% and negative-predictive-value (NPV): 87%. We did not find that photographs were reliable. Although SAQ-score has high NPV, a more sensitive fracture-specific PROM is needed to identify patients who do not need a 3-month follow-up visit


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_8 | Pages 30 - 30
10 May 2024
Davies O Mowbray J Maxwell R Hooper G
Full Access

Introduction. The Oxford Unicompartmental Knee Replacement (OUKA) is the most popular unicompartmental knee replacement (UKR) in the New Zealand Joint Registry with the majority utilising cementless fixation. We report the 10-year radiological outcomes. Methods. This is a prospective observational study. All patients undergoing a cementless OUKA between May 2005 and April 2011 were enrolled. There were no exclusions due to age, gender, body mass index or reduced bone density. All knees underwent fluoroscopic screening achieving true anteroposterior (AP) and lateral images for radiographic assessment. AP assessment for the presence of radiolucent lines and coronal alignment of the tibial and femoral components used Inteliviewer radiographic software. The lateral view was assessed for lucencies as well as sagittal alignment. Results. 687 OUKAs were performed in 641 patients. Mean age at surgery was 66 years (39–90yrs), 382 in males and 194 right sided. 413 radiographs were available for analysis; 92 patients had died, 30 UKRs had been revised and 19 radiographs were too rotated to be analysed the remainder were lost to follow-up. Mean radiograph to surgery interval was 10.2 years (7.1–16.2yrs). RLLs were identified in zone 1 (3 knees), zone 2 (2 knees), zone 3 (3 knees), zone 5 (3 knees), zone 6 (2 knees) and zone 7 (42 knees). No RLL had progressed, and no case had any osteolysis or prosthesis subsidence. Alignment in the coronal plane: mean 2.90° varus (9.30° varus - 4.49° valgus) of the tibial component to the tibial anatomic axis and the femoral component in mean 4.57° varus (17.02° varus - 9.3° valgus). Sagittal plane posterior tibial slope was a mean 6.30° (0.44° -13.60° degrees) and mean femoral component flexion of 8.11° (23.70° flexion – 16.43° extension). Conclusion. The cementless OUKA demonstrates stable fixation with low revision rates at our centre supporting results earlier published by the design centre


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 55 - 55
1 Nov 2015
Lee G
Full Access

Introduction. Proposed advantages of patient-specific instrumentation in total knee arthroplasty (TKA) include enhanced accuracy for component positioning, reduced operative time, and increased OR efficiency leading to potential cost savings. However, various studies with relatively small sample sizes have evaluated the impact of these custom cutting guides and were unable to detect any significant differences compared to conventional surgical technique. Therefore, the purpose of this study is to improve the sensitivity of investigation through meta-analysis and compare patient-specific versus standard TKA instrumentation with regard to: (1) coronal alignment, (2) sagittal alignment, (3) operative time, (4) blood loss, (5) transfusion requirement, and (6) peri-operative costs. Methods. A systematic review of the peer-reviewed literature indexed on Medline and/or Embase was performed in search of Level I, II, or III studies comparing the results of patient-specific versus standard TKA instrumentation. Nine studies remained following the screening process. The data published in these studies were extracted and aggregated for the purpose of comparing the two treatment groups with regard to coronal alignment, sagittal alignment, operative time, blood loss, transfusion requirement, and peri-operative costs. Using previously published data, it was determined that a sample size of 80 patients per group would have sufficient power (0.80) to detect a significant difference (α = 0.05) in all primary outcomes. Results. The nine component studies described a total of 957 total knee arthroplasties (529 performed with patient-specific instrumentation and 428 with standard instrumentation). While patient-specific instrumentation demonstrated improved accuracy in coronal alignment as measured by femorotibial angle (FTA) (p = 0.0003), standard instrumentation demonstrated improved accuracy in coronal alignment as measured by hip-knee-ankle (HKA) (p = 0.02). Importantly, there were no significant differences in the ability of either technique to avoid outliers (+ or – 3 degrees of target alignment) in either FTA or HKA. Measures of sagittal alignment accuracy were equivalent between the two groups for both the femoral component (p = 0.5) and the tibial component (p = 0.9). Operative time (92.5 minutes vs. 104.1 minutes, p = 0.1), blood loss (371 mL vs. 384 mL, p = 0.2), and transfusion requirement (10.1% vs. 14.1%, p = 0.1) were also similar between treatment groups. The three studies that compared costs (307 TKAs) found decreased peri-operative costs associated with patient-specific instrumentation as a result of increased OR efficiency, but these costs were offset by the expenditures related to producing the custom instrumentation. Discussion and Conclusion. Patient-specific instrumentation does not demonstrate superiority over standard instrumentation with regard to coronal or sagittal alignment. In addition, operative time, blood loss, and transfusion requirement are similar between techniques. Finally, while patient-specific instrumentation can lead to cost savings through improved OR efficiencies, these costs are often offset by the cost of generating the custom instrumentation. Therefore, current data does not support routine use of patient-specific instrumentation during primary TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 299 - 299
1 Mar 2013
Parker D Lustig S Scholes C Kinzel V Oussedik S Coolican M
Full Access

Purpose. Patient-matched instrumentation is advocated as the latest development in arthroplasty surgery. Custom-made cutting blocks created from preoperative MRI scans have been proposed to achieve perfect alignment of the lower limb in total knee arthroplasty (TKA). The aim of this study was to determine the efficacy of patient-specific cutting blocks by comparing them to navigation, the current gold standard. Methods. 60 TKA patients were recruited to undergo their surgery guided by Smith & Nephew Visionaire Patient-Matched cutting blocks. Continuous computer navigation was used during the surgery to evaluate the accuracy of the cutting blocks. The blocks were assessed for the fit to the articular surface, as well as alignment in the coronal, sagittal and rotational planes, sizing, and resection depth. Results. All patient-matched cutting blocks were a good fit intra-operatively. Significant differences (p<0.05) in the resection depths of the distal femur and tibial plateau were observed between the cutting blocks and computer navigation for the medial compartment. Cutting block alignment of the femur and tibia in the coronal and sagittal planes also differed significantly (p<0.05) to navigation measurements. The PSCB would have placed 79.3% of the sample within +3° of neutral in the coronal plane, while the rotational and sagittal alignment results within +3° were 77.2% and 54.5% respectively. In addition, intraoperative assessment of sagittal femoral alignment differed to planned alignment by an average of 4.0 degrees (+/−2.3). Conclusion. This study suggests the use of patient-matched cutting blocks is not accurate, particularly in the guidance of the sagittal alignment in total knee arthroplasty. Despite this technique creating well fitting cutting blocks, intraoperative monitoring revealed an unacceptable degree of potential limb mal-alignment, resulting in increased outliers particularly when compared with standard computer navigation. Caution is recommended before PSCB are used routinely without objective verification of alignment


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 39 - 39
1 Jul 2020
Le V Escudero M Wing K Younger ASE Penner M Veljkovic A
Full Access

Restoration of ankle alignment is thought to be critical in total ankle arthroplasty (TAA) outcomes, but previous research is primarily focused on coronal alignment. The purpose of this study was to investigate the sagittal alignment of the talar component. The talar component inclination, measured by the previously-described gamma angle, was hypothesized to be predictive of TAA outcomes. A retrospective review of the Canadian Orthopaedic Foot and Ankle Society (COFAS) database of ankle arthritis was performed on all TAA cases at a single center over a 11-year period utilizing one of two modern implant designs. Cases without postoperative x-rays taken between 6 and 12 weeks were excluded. The gamma angle was measured by two independent orthopaedic surgeons twice each and standard descriptive statistics was done in addition to a survival analysis. The postoperative gamma angles were analyzed against several definitions of TAA failure and patient-reported outcome measures from the COFAS database by an expert biostatistician. 109 TAA cases satisfied inclusion and exclusion criteria. An elevated postoperative gamma angle higher than 22 degrees was associated with talar component subsidence, defined as a change in gamma angle of 5 degrees or more between postoperative and last available followup radiographs. This finding was true when adjusting for age, gender, body mass index (BMI), and inflammatory arthritis status. All measured angles were found to have good inter- and intraobserver reliability. Surgeons should take care to not excessively dorsiflex the talar cuts during TAA surgery. The gamma angle is a simple and reliable radiographic measurement to predict long-term outcomes of TAA and can help surgeons counsel their patients postoperatively


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 26 - 26
1 Mar 2017
Miyagi J Harada Y Miyasaka T Kitahara S
Full Access

INTRODUCTION. An accelerometer-based portable navigation system (KneeAlign2, OrthAlign Inc., Aliso Viejo, CA) is expected to improve mechanical axis and component alignment compared to conventional instrumentation in total knee arthroplasty (TKA). However, past reports have evaluated its accuracy using only radiographic measurements. The purpose of this study was to analyze the accuracy of the KneeAlign2 system with radiography and more detailed three-dimensional (3D) CT. METHODS. We targeted 22 patients (24 knees) with severe osteoarthritis who underwent primary TKA using the KneeAlign2 system. Cemented, fixed-bearing, cruciate-retaining prostheses were implanted in all patients. We used postoperative standing-position full-length radiographic evaluation of the lower limbs to measure the hip-knee-ankle angle (HKA), frontal femoral component angle (FFC), and frontal tibial component angle (FTC). However, lower limb rotation and knee flexion could affect radiographic measurement of HKA and the component positioning angle. We used 3D bone models reconstructed from pre- and postoperative CT images to precisely analyze the 3D component positioning. For a 3D matching bone model made from these models, a 2D projection of the pre- and postoperative component positioning planes was made, and the projection angle was measured as angle error compared to the preoperative planned position (Figure 1). Average surgery time and total blood loss on postoperative day 7 were also recorded. RESULTS. There were 24 knees available for analysis. Mean HKA was 0.1° ± 2.2 varus; 16.7% of knees had coronal outliers exceeding 3°. Mean FFC was 0.9° ± 1.9 varus; 29.2% of femoral components were placed with coronal outliers exceeding 2°. Mean FTC was 1.2° ± 1.6 valgus; 20.8% of tibial components were placed with coronal outliers exceeding 2°. In 3D-CT evaluation, mean femoral coronal and sagittal alignment were 1.2° ± 1.7 varus (outliers exceeding ±2°: 37.5%) and 0.8° ± 2.4 flexion (outliers exceeding ±2°: 20.8%), respectively. Mean tibial coronal and sagittal alignment were 1.1° ± 1.4 valgus (outliers exceeding ±2°: 33.3%) and 0.1° ± 1.6 flexion (outliers exceeding ±2°: 20.8%), respectively. Average surgical time was 96 ± 7.7 minutes, and blood loss was 400 g ± 113 on postoperative day 7. CONCLUSIONS. With radiographic and 3D-CT evaluation, the mean angle error values for the femoral and tibial components were less than 2° in the coronal plane, and less than 1° in the sagittal plane. KneeAlign2 is highly accurate in positioning the femoral and tibial components in TKA. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 21 - 21
1 Dec 2013
Bugbee W Aram L Schenher A Swank M
Full Access

Introduction. Optimal alignment of the tibial component in TKA is an important consideration. General agreement exists on the appropriate coronal alignment. However there is no consensus on sagittal alignment (posterior slope). Some surgeons target a fixed posterior slope (usually between 0 and 10 degrees), while others attempt to match the patient's intrinsic anatomy. The purpose of this study was to evaluate the tibial posterior slope in patients undergoing TKA. Methods. 13,586 CT scans of patients undergoing patient specific were analyzed. Three-dimensional reconstructions were performed and the posterior tibial slope was measured. Mean slope and ranges were determined. Results. Mean tibial posterior slope was 7.2 +/− 3.7 degrees (range −5 to 25 deg.) 35% of patients had tibial slope measurements more than 3 degrees different from the mean slope of this population. Conclusion. This study demonstrated a remarkable variability of tibial slope in patients undergoing TKA. This information may be useful to surgeons in determining “optimum” sagittal alignment of the tibial component for an individual patient. A patient with preoperative tibial slope very different from “average” may be at risk for sagittal malalignment of the tibial component. Additionally, large preoperative to postoperative changes in tibial slope may adversely affect knee kinematics and clinical outcome


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 31 - 31
1 Sep 2014
Mughal A Kruger N
Full Access

Purpose of Study. Debate exists in the literature about the surgical management of sub-axial cervical burst fractures regarding the approach and types of fixation of these injuries. Our Acute Spinal Injury (ASCI) unit prefers anterior only cervical corpectomy and plate fixation in the management of these injuries. The objective of this study was to radiologically assess the long term outcomes (minimum 2 yrs) of our series. Patients and Methods. Patients were identified using the Acute Spinal Injury Unit (ASCI) database that had had anterior only corpectomy and plate fixation for trauma as a standardised procedure between 2006 and 2009. Initial post-op radiological review included the sagittal alignment, hardware characteristics and surgical technique. Radiological review after a minimum of 24 months involved the union, sagittal alignment, hardware characteristics, graft incorporation and adjacent level degeneration at the site of injury. Results. A total of 51 patients were identified but only 11 were available for review at the minimum 24 months. There were 10 males and 1 female with an average age of 28.1years (18–62). The follow up duration was on average 50.6months (27–71) median 60 months. The levels fused were C3-5 (2), C4-6 (5), C5-7 (3), and C4-7 (1 double level). There was NO metalwork failure, NO screw osteolysis and a varying degree of degenerative changes but a 100% FUSION RATE. The average loss of cervical lordosis was 2.5 ° over the follow up period. Conclusion. Anterior stand alone cervical corpectomy and plating alone appears to be a safe, cost effective and time saving alternative in the management of cervical burst fractures in the sub axial spine with no significant long term complications. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 136 - 136
1 Jan 2016
Fujii T Tanaka Y Seko M Nobori M
Full Access

Background. Bilateral leg alignment should be equal for preventing leg length discrepancy and diminishing limping in walking. The candidates for total knee arthroplasty (TKA) sometimes image bilateral TKA seems to get completely same shape and alignment of legs. The query that bilateral TKA, staged in a day and by one surgeon, has an advantage to reconcile one side alignment and component setting to another side, was investigated. Materials and methods. This retrospective investigation enrolled 408 knees of 204 patients (74 years old on average) underwent one day TKA and 48 knees of 24 cases (73 years old on average) underwent two days TKA. There were no history of trauma and surgery on both legs and no other obvious features. All components were same (Vanguard PS TKA, Biomet Inc. Warsaw IN). Surgical procedure is single (modified gap technique) with intramedullar rod for the femur and extramedullar system for the tibia without navigation system and patient specific instrumentation (PSI). Postoperative femorotibial angle (FTA), α, β, γ, δ angles were computed and the absolutes of differences between right and left were analyzed. (two sample t test). Results. Differences of postoperative FTA were 2.4 +/− 1.9 deg in one day, and 3.6 +/− 3.9 deg. in two days (p<0.05). Differences of α angle were 1.7 +/− 1.3 deg. in one day TKA and 2.5 +/− 3.4 deg. in two days TKA (p<0.05), β angle were 1.8 +/− 1.6 deg. and 1.7 +/− 1.4 deg. (ns), γ angle were 3.0 +/− 3.9 deg. and 3.0 +/− 2.6 deg. (ns), δ angle were 2.6 +/− 2.2 deg. and 2.7 +/− 2.5 deg. (ns) respectively. Discussion. Large volume surgeons purposely do fine adjustment of coronal alignment during operation even if they employ navigation system or PSI. The only landmark for the adjustment of the femur is impalpable femoral head that makes the adjustment difficult although there are several landmarks for the adjustment of the tibia that makes the adjustment reliable. The substitute method for the femoral adjustment is still inaccurate. Several factors such as more range of motion should be considered in sagittal alignment. The differences are wider in sagittal alignment as a result. In summary, bilateral TKA can reconcile one side alignment to other at coronal femoral alignment


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 102 - 102
1 Sep 2012
Kuong E Cheung K Samartzis D Yeung K Luk K
Full Access

Despite the myriad new spinal instrumentation systems, scoliosis can rarely be fully corrected, especially when the curves are stiff. A novel superelastic nickel-titanium (nitinol) rod that maximises the ability to slowly correct spinal deformities by utilising the viscoelastic properties of the spine has been developed. This parallel, double-blinded, randomised controlled trial compared the safety and efficacy of these new rods to conventional titanium rods in 23 patients with adolescent idiopathic scoliosis. The superelastic nitinol rods were found to be safe, could gradually correct scoliosis curves, and ultimately resulted in better coronal and sagittal alignments compared to traditional rods. Despite the myriad new spinal instrumentation systems, scoliosis can rarely be fully corrected, especially when the curves are stiff. A novel superelastic nickel-titanium (nitinol) rod that maximises the ability to slowly correct spinal deformities by utilising the viscoelastic properties of the spine has been developed. This parallel, double-blinded, randomised controlled trial compared the safety and efficacy of these new rods to conventional titanium rods in 23 patients with adolescent idiopathic scoliosis. The superelastic nitinol rods were found to be safe, could gradually correct scoliosis curves, and ultimately resulted in better coronal and sagittal alignments compared to traditional rods


Full Access

Cervical spinal arthrodesis is the standard of care for the treatment of spinal diseases induced neck pain. However, adjacent segment disease (ASD) is the primary postoperative complication, which draws great concerns. At present, controversy still exists for the etiology of ASD. Knowledge of cervical spinal loading pattern after cervical spinal arthrodesis is proposed to be the key to answer these questions. Musculoskeletal (MSK) multi-body dynamics (MBD) models have an opportunity to obtain spinal loading that is very difficult to directly measure in vivo. In present study, a previously validated cervical spine MSK MBD model was developed for simulating cervical spine after single-level anterior arthrodesis at C5-C6 disc level. In this cervical spine model, postoperative sagittal alignment and spine rhythms of each disc level, different from normal healthy subject, were both taken into account. Moreover, the biomechanical properties of facet joints of adjacent levels after anterior arthrodesis were modified according to the experimental results. Dynamic full range of motion (ROM) flexion/extension simulation was performed, where the motion data after arthrodesis was derived from published in-vivo kinematic observations. Meanwhile, the full ROM flexion/extension of normal subject was also simulated by the generic cervical spine model for comparative purpose. The intervertebral compressive and shear forces and loading-sharing distribution (the proportions of intervertebral compressive and shear force and facet joint force) at adjacent levels (C3-C4, C4-C5 and C6-C7 disc levels) were then predicted. By comparison, arthrodesis led to a significant increase of adjacent intervertebral compressive force during the head extension movement. Postoperative intervertebral compressive forces at adjacent levels increased by approximate 20% at the later stage of the head extension movement. However, there was no obvious alteration in adjacent intervertebral compressive force, during the head flexion movement. For the intervertebral shear forces in the anterior-posterior direction, no significant differences were found between the arthrodesis subject and normal subject, during the head flexion/extension movement. Meanwhile, cervical spinal loading-sharing distribution after anterior arthrodesis was altered compared with the normal subject's distribution, during the head extension movement. In the postoperative loading-sharing distribution, the percentage of intervertebral disc forces was further increased as the motion angle increased, compared with normal subject. In conclusion, cervical spinal loading after anterior arthrodesis was significantly increased at adjacent levels, during the head extension movement. Cervical spine musculoskeletal MBD model provides an attempt to comprehend postoperative ASD after anterior arthrodesis from a biomechanical perspective


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 107 - 107
1 Oct 2012
Vrtovec T Janssen M Pernuš F Castelein R Viergever M
Full Access

Pelvic incidence is as a key factor for sagittal balance regulation that describes the anatomical configuration of the pelvis. The sagittal alignment of the pelvis is usually evaluated in two-dimensional (2D) sagittal radiographs in standing position by pelvic parameters of sacral slope, pelvic tilt and pelvic incidence (PI). However, the angle of PI remains constant for an arbitrary subject position and orientation, and can be therefore compared among subjects in standing, sitting or supine position. Such properties also enable the measurement of PI in three-dimensional (3D) images, commonly acquired in supine position. The purpose of this study is to analyse the sagittal alignment of the pelvis in terms of PI in 3D computed tomography (CT) images. A computerised method based on image processing techniques was developed to determine the anatomical references, required to measure PI, i.e. the centre of the left femoral head, the centre of the right femoral, the centre of the sacral endplate, and the inclination of the sacral endplate. First, three initialisation points were manually selected in 3D at the approximate location of the left femoral head, right femoral head and L5 vertebral body. The computerised method then determined the exact centres of the femoral heads in 3D from the spheres that best fit to the 3D edges of the femoral heads. The exact centre of the sacral endplate in 3D was determined by locating the sacral endplate below the L5 vertebral body and finding the midpoint of the lines between the anterior and posterior edge, and between the left and right edge of the endplate. The exact inclination of the sacral endplate in 3D was determined from the plane that best fit to the endplate. Multiplanar 3D image reformation was applied to obtain the superposition of the femoral heads in the sagittal view, so that the hip axis was observed as a straight not inclined line and all anatomical structures were completely in line with the hip axis. Finally, PI was automatically measured as the angle between the line orthogonal to the inclination of the sacral endplate and the line connecting the centre of the sacral endplate with the hip axis. The method was applied to axially reconstructed CT scans of 426 subjects (age 0–89 years, pixel size 0.4–1.0 mm, slice thickness 3.0–4.0 mm). Thirteen subjects were excluded due to lumbar spine trauma and presence of the sixth lumbar segment. For the remaining subjects, the computerised measurements were visually assessed for errors, which occurred due to low CT image quality, low image intensity of bone structures, or other factors affecting the determination of the anatomical references. The erroneous or ambiguous results were detected for 43 subjects, which were excluded from further analysis. For the final cohort of 370 subjects, statistical analysis was performed for the obtained PI. The resulting mean PI ± standard deviation was equal to 46.6 ± 9.2 degrees for males (N = 189, age 39.7 ± 20.3 years), 47.6 ± 10.7 degrees for females (N = 181, age 43.4 ± 19.9 years), and 47.1 ± 10.0 degrees for both genders (N = 370, age 41.5 ± 20.1 years). Correlation analysis yielded relatively low but statistically significant correlation between PI and age, with the correlation coefficient r = 0.20 (p < 0.005) for males, r = 0.32 (p < 0.0001) for females, and r = 0.27 (p < 0.0001) for both genders. No statistically significant differences (p = 0.357) were found between PI for male and female subjects. This is the first study that evaluates the sagittal alignment of the pelvis in terms of PI completely in 3D. Studies that measured PI manually from 2D sagittal radiographs reported normative PI in adult population of 52 ± 10 degrees, 53 ± 8 degrees and 51 ± 9 degrees for 25 normal subjects aged 21–40, 41–60, and over 60 years, respectively [3], and 52 ± 5 degrees for a cohort of 160 normal subjects [4]. The PI of 47 ± 10 degrees obtained in our study is lower than the reported normative values, which indicates that radiographic measurements may overestimate the actual PI. Radiographic measurements are biased by the projective nature of X-ray image acquisition, as it is usually impossible to obtain the superposition of the two femoral heads. The midpoint of the line connecting the centres of femoral heads in 2D is therefore considered to be the reference point on the hip axis, moreover, the inclination of the sacral endplate in the sagittal plane is biased by its architecture and inclination in the coronal plane. On the other hand, the measurements in the present study were obtained by applying a computerized method to CT images that determined the exact anatomical references in 3D. Perfect sagittal views were generated by multiplanar reformation, which aligned the centres of the femoral heads in 3D. The measurement of PI was therefore not biased by acquisition projection or structure orientation, as all anatomical structures were completely in line with the hip axis. Moreover, the range of the PI obtained in every study (standard deviation of around 10 degrees) indicates that the span of PI is relatively large. It can be therefore concluded that an increased or decreased PI may not necessary relate to a spino-pelvic pathology


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 2 - 2
1 Aug 2020
Matache B King GJ Watts AC Robinson P Mandaleson A
Full Access

Total elbow arthroplasty (TEA) usage is increasing owing to expanded surgical indications, better implant designs, and improved long-term survival. Correct humeral implant positioning has been shown to diminish stem loading in vitro, and radiographic loosening in in the long-term. Replication of the native elbow centre of rotation is thought to restore normal muscle moment arms and has been suggested to improve elbow strength and function. While much of the focus has been on humeral component positioning, little is known about the effect of positioning of the ulnar stem on post-operative range of motion and clinical outcomes. The purpose of this study is to determine the effect of the sagittal alignment and positioning of the humeral and ulnar components on the functional outcomes after TEA. Between 2003 and 2016, 173 semi-constrained TEAs (Wright-Tornier Latitude/Latitude EV, Memphis, TN, USA) were performed at our institution, and our preliminary analysis includes 46 elbows in 41 patients (39 female, 7 male). Patients were excluded if they had severe elbow deformity precluding reliable measurement, experienced a major complication related to an ipsilateral upper limb procedure, or underwent revision TEA. For each elbow, saggital alignment was compared pre- and post-operatively. A best fit circle of the trochlea and capitellum was drawn, with its centre representing the rotation axis. Ninety degree tangent lines from the intramedullary axes of the ulna and humerus, and from the olecranon tip to the centre of rotation were drawn and measured relative to the rotation axis, representing the ulna posterior offset, humerus offset, and ulna proximal offset, respectively. In addition, we measured the ulna stem angle (angle subtended by the implant and the intramedullary axis of the ulna), as well as radial neck offset (the length of a 90o tangent line from the intramedullary axis of the radial neck and the centre of rotation) in patients with retained or replaced radial heads. Our primary outcome measure was the quickDASH score recorded at the latest follow-up for each patient. Our secondary outcome measures were postoperative flexion, extension, pronation and supination measured at the same timepoints. Each variable was tested for linear correlation with the primary and secondary outcome measures using the Pearson two-tailed test. At an average follow-up of 6.8 years (range 2–14 years), there was a strong positive correlation between anterior radial neck offset and the quickDASH (r=0.60, p=0.001). There was also a weak negative correlation between the posterior offset of the ulnar component and the qDASH (r=0.39, p=0.031), and a moderate positive correlation between the change in humeral offset and elbow supination (r=0.41, p=0.044). The ulna proximal offset and ulna stem angle were not correlated with either the primary, or secondary outcome measures. When performing primary TEA with radial head retention, or replacement, care should be taken to ensure that the ulnar component is correctly positioned such that intramedullary axis of the radial neck lines up with the centre of elbow rotation, as this strongly correlates with better function and less pain after surgery