Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 72 - 72
4 Apr 2023
Silva-Henao J Pahr DH Reisinger A
Full Access

Primary implant stability is critical for osseointegration and subsequent implant success. Small displacements on the screw/bone interface are necessary for implant success, however, larger displacements can propagate cracks and break anchorage points which causes the screw to fail. Limited information is available on the progressive degradation of stability of an implanted bone screw since most published research is based on monotonic, quasi-static loading [1]. This study aims to address this gap in knowledge. A total of 100 implanted trabecular screws were tested using multi-axial loading test set-up. Screws were loaded in cycles with the applied force increasing 1N in each load cycle. In every load cycle, Peak forces, displacements, and stiffness degradation (calculated in the unloading half of the cycle) where recorded. 10 different loading configurations where tested. The damage vs displacement shows a total displacement at the point of failure between 0.3 and 0.4 mm while an initial stiffness reduction close to 40%. It is also shown that at a displacement of ~0.1 mm, the initial stiffness of every sample had degraded by 20% (or more) meaning that half of the allowable degradation occurred in the first 25-30% of the total displacement. Other studies on screw overloading [1] suggests similar results to our concerning initial stiffness degradation at the end of the loading cycle. Our results also show that the initial stiffness degrades faster with relatively small deformations suggesting that the failure point of an implanted screw might occur before the common failure definition (pull-out force, for example). These results are of great significance since primary implant stability is better explained by the stiffness of the construct than by its failure point


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 70 - 70
1 Mar 2021
Scattergood S Flannery O Berry A Fletcher J Mitchell S
Full Access

Abstract. Objectives. The use of cannulated screws for femoral neck fractures is often limited by concerns of avascular necrosis (AVN) occurring, historically seen in 10–20% of fixed intracapsular fractures. The aim of this study was to investigate the rate of AVN with current surgical techniques within our unit. Methods. A single centre retrospective review was performed. Operative records between 1st July 2014 and 31st May 2019 were manually searched for patients with an intracapsular neck of femur fracture fixed with cannulated screws, with minimum one year follow up. Patient records and radiographs were reviewed for clinical and radiographic diagnoses of AVN and/or non-union. Fracture pattern and displacement, screw configuration and reduction techniques were recorded, with radiographs independently analysed by five orthopaedic surgeons. Results. Sixty-five patients were identified, average age of 72 years (range 48–87). Thirty-six patients (55%) sustained displaced fractures and 29 patients (45%) had undisplaced fractures. Two (3%) patients developed AVN, with no cases of fracture non-union. Ten patients (15%) sustained a high-energy injury, though none of these patients developed AVN. Screws configurations were: two (3%) triangle apex-superior, 39 (60%) triangle apex-inferior, 22 (34%) rhomboid and two (3%) other, with nine (14%) cases using washers. All fractures required closed reduction; no open reductions performed. Conclusions. Our observed AVN rate is much lower than widely reported, especially given the proportion of displaced fractures that were fixed. With adequate fixation, even in displaced fracture patterns with imperfect reduction, cannulated screws are an excellent option for intracapsular neck of femur fractures. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 221 - 221
1 Jul 2014
Kueny R Fensky F Sellenschloh K Püschel K Rueger J Lehmann W Hansen-Algenstaedt N Morlock M Huber G
Full Access

Summary Statement

From a mechanical point of view, the clinical use of pedicle screws in the atlas is a promising alternative to lateral mass screws due to an increased biomechanical fixation.

Introduction

The most established surgical technique for posterior screw fixation in the atlas (C1) is realised by screw placement through the lateral mass [1]. This surgical placement may lead to extended bleeding from the paravertebral venous plexus as well as a violation of the axis (C2) nerve roots [1]. Using pedicle screws is an emerging technique which utilises the canal passing through the posterior arch enabling the use of longer screws with a greater contact area while avoiding the venous plexus and axis nerve roots. The aim of this ex vivo study was to investigate if pedicle screws in C1 bear the potential to replace the more common lateral mass screws. Therefore, the comparative biomechanical fixation strengths in terms of cycles to failure, stiffness, and removal torque were investigated.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 5 - 5
4 Apr 2023
Vicary-Watts R McLauchlan G
Full Access

Cannulated hip screws are frequently used in the management of hip fractures. There have been concerns over the failure rate of the technique and the outcomes of those that subsequently require conversion to total hip replacement (THR).

This study utilised a database of over 600 cannulated hip screw (CHS) fixations performed over a 14-year period and followed up for a minimum of one year (1-14). We identified 57 cases where a conversion to THR took place (40 females, 17 males, mean age: 71.2 years). Patient demographics, original mechanism of injury, fracture classification, reason for fixation failure, time until arthroplasty, implant type and post-arthroplasty complications were recorded. Clinical outcomes were measured using the Oxford Hip Score.

The failure rate of cannulated screw treatment was 9.4% and the mean time from initial fixation to arthroplasty was 15.4 (16.5) months. Thirty six fractures were initially undisplaced and 21 were displaced. As one might expect the displaced cases tended to be younger but this didn't reach statistical significance [66.5(14.3) vs 72.7(13.1), p=0.1]. The commonest causes of failure were non-union (25 cases, 44%) and avascular necrosis (17 cases, 30%). Complications after THR consisted of one leg length discrepancy and one peri-prosthetic fracture. The mean Oxford score pre-arthroplasty was 12.2 (8.4), improving to 38.4 (11.1) at one-year. Although the pre op Oxford scores tended to be lower in patients with undisplaced fractures and higher ASA scores, the improvement was the same whatever the pre-op situation. The one-year Oxford score and the improvement in score are comparable to those seen in the literature for THR in general.

In conclusion, CHS has a high success rate and where salvage arthroplasty is required it can provide good clinical outcomes with low complication rates.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 66 - 66
14 Nov 2024
Tirta M Hjorth MH Jepsen JF Kold S Rahbek O
Full Access

Introduction

Epiphysiodesis, defined as the process of closing the growth plate (physis), have been used for several years as a treatment option of cases where the predicted leg-length discrepancy (LLD) falls between 2 to 5 cm. The aim of this study was to systematically review the existing literature on the effectiveness of three different epiphysiodesis techniques with implant usage for the treatment of leg-length discrepancy in the pediatric population. The secondary aim was to address the reported complications of staples, tension-band plates (TBP) and percutaneous epiphysiodesis screws (PETS).

Method

This systematic review was performed according to PRISMA guidelines. We searched MEDLINE (PubMed), Embase, Cochrane Library, Web of Science and Scopus for studies on skeletally immature patients with LLD treated with epiphysiodesis with an implant. The extracted outcome categories were effectiveness of epiphysiodesis (LLD measurements pre/post-operatively, successful/unsuccessful) and complications that were graded on severity.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 57 - 57
1 Mar 2021
Tennyson M Abdulkarim A Krkovic M
Full Access

Various technical tips have been described on the placement of poller screws during intramedullary nailing however studies reporting outcomes are limited. Overall, there is no consistent conclusion about whether intramedullary nailing alone, or intramedullary nails augmented with poller screws is more advantageous. In a systematic review, we asked: (1) What is the proportion of non-unions with poller screw usage? (2) What is the proportion of malalignment, infection and secondary surgical procedures with poller screws usage?

We conducted a systematic review of multiple databases including Pubmed, EMBASE, and the Cochrane Library. Seventy-four records were identified, twelve met our inclusion criteria.

Twelve studies with a total of 348 participants and 353 fractures were included. Mean follow up time was 21.4 months and mean age of included patients was 40.1 year. Seven studies had heterogenous population of non-unions and/ or malunions in addition to acute fractures. Three studies included only acute fractures and two studies examined non unions only. Four of the twelve studies reported non unions with an overall outcome proportion of 4%. Six studies reported coronal malalignment with an overall outcome proportion of 6%. The secondary surgical procedures rate ranged from 2 – 40% with an overall outcome proportion of 8% and included grafting, revisions and any reported cases of removal of metal work.

When compared with existing literature our review suggests intramedullary nailing with poller screws has lower rates of non-unions and coronal malalignment than those reported in the literature for intramedullary nailing alone. Prospective randomized control trial is necessary to fully determine outcome benefits.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 43 - 43
11 Apr 2023
Amirouche F Mok J Leonardo Diaz R Forsthoefel C Hussain A
Full Access

Lateral lumbar interbody fusion (LLIF) has biomechanical advantages due to the preservation of ligamentous structures (ALL/PLL), and optimal cage height afforded by the strength of the apophyseal ring. We compare the biomechanical motion stability of multiple levels LLIF (4 segments) utilising PEEK interbody 26mm cages to stand-alone cage placement and with supplemental posterior fixation with pedicle screw and rods.

Six lumbar human cadaver specimens were stripped of the paraspinal musculature while preserving the discs, facet joints, and osteoligamentous structures and potted. Specimens were tested under 5 conditions: intact, posterior bilateral fixation (L1-L5) only, LLIF-only, LLIF with unilateral fixation and LLIF with bilateral fixation. Non-destructive testing was performed on a universal testing machine (MTS Systems Corp) to produce flexion-extension, lateral-bending, and axial rotation using customized jigs and a pulley system to define a non-constraining load follower. Three-dimensional spine motion was recorded using a motion device (Optotrak).

Results are reported for the L3-L4 motion segment within the construct to allow comparison with previously published works of shorter constructs (1-2 segments). In all conditions, there was an observed decrease in ROM from intact in flexion/extension (31%-89% decrease), lateral bending (19%-78%), and axial rotation (37%-60%). At flexion/extension, the decreases were statistically significant (p<0.007) except for stand-alone LLIF. LLIF+unilateral had similar decreases in all planes as the LLIF+bilateral condition. The observed ROM within the 4-level construct was similar to previously reported results in 1-2 levels for stand-alone LLIF and LLIF+bilateral.

Surgeons may be concerned about the biomechanical stability of an approach utilizing stand-alone multilevel LLIF. Our results show that 4-level multilevel LLIF utilizing 26 mm cages demonstrated ROM comparable to short-segment LLIF. Stand-alone LLIF showed a decrease in ROM from the intact condition. The addition of posterior supplemental fixation resulted in an additional decrease in ROM. The results suggest that unilateral posterior fixation may be sufficient.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 26 - 26
2 Jan 2024
Jacob A Heumann M Zderic I Varga P Caspar J Lauterborn S Haschtmann D Fekete T Gueorguiev B Loibl M
Full Access

Stand-alone anterior lumbar interbody fusion (ALIF) provides the opportunity to avoid supplemental posterior fixation. This may reduce morbidity and complication rate, which is of special interest in patients with reduced bone mineral density (BMD). This study aims to assess immediate biomechanical stability and radiographic outcome of a stand-alone ALIF device with integrated screws in specimens of low BMD.

Eight human cadaveric spines (L4-sacrum) were instrumented with SynFix-LR™ (DePuy Synthes) at L5/S1. Quantitative computed tomography was used to measure BMD of L5 in AMIRA. Threshold values proposed by the American Society of Radiology 80 and 120 mg CaHa/mL were used to differentiate between Osteoporosis, Osteopenia, and normal BMD. Segmental lordosis, anterior and posterior disc height were analysed on pre- and postoperative radiographs (Fig 1). Specimens were tested intact and following instrumentation using a flexibility protocol consisting of three loading cycles to ±7.5 Nm in flexion-extension, lateral bending, and axial rotation. The ranges of motion (ROM) of the index level were assessed using an optoelectronic system.

BMD ranged 58–181mg CaHA/mL. Comparison of pre- and postoperative radiographs revealed significant increase of L5/S1 segmental lordosis (mean 14.6°, SD 5.1, p < 0.001) and anterior disc height (mean 5.8mm, SD 1.8, p < 0.001), but not posterior disc height. ROM of 6 specimens was reduced compared to the intact state. Two specimens showed destructive failure in extension. Mean decrease was most distinct in axial rotation up to 83% followed by flexion-extension.

ALIF device with integrated screws at L5/S1 significantly increases segmental lordosis and anterior disc height without correlation to BMD. Primary stability in the immediate postoperative situation is mostly warranted in axial rotation. The risk of failure might be increased in extension for some patients with reduced lumbar BMD, therefore additional posterior stabilization could be considered.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 24 - 24
2 Jan 2024
Burgos J Mariscal G Antón-Rodrigálvarez L Sanpera I Hevia E García V Barrios C
Full Access

The aim of this study was to report the restauration of the normal vertebral morphology and the absence of curve progression after removal the instrumentation in AIS patients that underwent posterior correction of the deformity by common all screws construct whitout fusion. A series of 36 AIS immature patients (Risser 3 or less) were include in the study. Instrumentation was removed once the maturity stage was complete (Risser 5). Curve correction was assessed at pre and postoperative, before instrumentation removal, just post removal, and more than two years after instrumentation removal. Epiphyseal vertebral growth modulation was assessed by a coronal wedging ratio (WR) at the apical level of the main curve (MC). The mean preoperative coronal Cobb was corrected from 53.7°±7.5 to 5.5º±7.5º (89.7%) at the immediate postop. After implants removal (31.0±5.8 months) the MC was 13.1º. T5–T12 kyphosis showed a significant improvement from 19.0º before curve correction to 27.1º after implants removal (p<0.05). Before surgery, WR was 0.71±0.06, and after removal WR was 0.98±0.08 (p<0.001). At the end of follow-up, the mean sagittal range of motion (ROM) of the T12-S1 segment was 51.2±21.0º. SRS-22 scores improved from 3.31±0.25 preoperatively to 3.68±0.25 at final assessment (p<0.001). In conclusion, fusionless posterior approach using a common all pedicle screws construct correct satisfactory scoliotic main curves and permits removal of the instrumentation once the bone maturity is reached. The final correction was highly satisfactory and an acceptable ROM of the previously lower instrumented segments was observed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 65 - 65
1 Dec 2020
Panagiotopoulou V Ovesy M Gueorguiev B Richards G Zysset P Varga P
Full Access

Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the humeral head and (2) evaluate and compare the ability of bone density measures and FE simulations to predict the experimental findings.

Screw perforation was investigated experimentally via quasi-static ramped compression testing of 20 cuboidal bone specimens at 1 mm/min. They were harvested from four fresh-frozen human cadaveric proximal humeri of elderly donors (aged 85 ± 5 years, f/m: 2/2), surrounded with cylindrical embedding and implanted with a single 3.5 mm locking screw (DePuy Synthes, Switzerland) centrally. Specimen-specific linear µFE (ParOSol, ETH Zurich) and nonlinear explicit µFE (Abaqus, SIMULIA, USA) models were generated at 38 µm and 76 µm voxel sizes, respectively, from pre- and post-implantation micro-Computed Tomography (µCT) images (vivaCT40, Scanco Medical, Switzerland). Bone volume (BV) around the screw and in front of the screw tip, and tip-to-joint distance (TJD) were evaluated on the µCT images. The µFE models and BV were used to predict the experimental force at the initial screw loosening and the maximum force until perforation.

Initial screw loosening, indicated by the first peak of the load-displacement curve, occurred at a load of 64.7 ± 69.8 N (range: 10.2 – 298.8 N) and was best predicted by the linear µFE (R2 = 0.90), followed by BV around the screw (R2 = 0.87). Maximum load was 207.6 ± 107.7 N (range: 90.1 – 507.6 N) and the nonlinear µFE provided the best prediction (R2 = 0.93), followed by BV in front of the screw tip (R2 = 0.89). Further, the nonlinear µFE could better predict screw displacement at maximum force (R2 = 0.77) than TJD (R2 = 0.70). The predictions of non-linear µFE were quantitatively correct.

Our results indicate that while density-based measures strongly correlate with screw perforation force, the predictions by the nonlinear explicit µFE models were even better and, most importantly, quantitatively correct. These models have high potential to be utilized for simulation of more realistic fixations involving multiple screws under various loading cases. Towards clinical applications, future studies should investigate if explicit FE models based on clinically available CT images could provide similar prediction accuracies.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 35 - 35
1 Dec 2020
Scattergood SD Berry AL Flannery O Fletcher JWA Mitchell SR
Full Access

Intracapsular neck of femur fractures may be treated with fixation or arthroplasty, depending on fracture characteristics and patient factors. Two common methods of fixation are the sliding hip screw, with or without a de-rotation screw, and cannulated screws. Each has its merits, and to date there is controversy around which method is superior, with either method thought to risk avascular necrosis of the femoral head (AVN) rates in the region of 10–20%.

Fixation with cannulated screws may be performed in various ways, with current paucity of evidence to show an optimum technique. There are a multitude of factors which are likely to affect patient outcomes: technique, screw configuration, fracture characteristics and patient factors. We present a retrospective case series analysis of 65 patients who underwent cannulated screw fixation of a hip fracture.

Electronic operative records were searched from July 2014 until July 2019 for all patients with a neck of femur fracture fixed with cannulated screws: 68 were found. Three patients were excluded on the basis of them having a pathological fracture secondary to malignancy, cases were followed up for 2 years post-operatively. Electronic patient records and X-rays were reviewed for all included patients. All X-rays were examined by each team member twice, with a time interval of two weeks to improve inter-observer reliability.

65 patients were included with 2:1 female to male ratio and average age of 72 years. 36 patients sustained displaced fractures and 29 undisplaced. Ten patients sustained a high-energy injury, none of which developed AVN. Average time to surgery was 40 hours and 57 patients mobilised on day one post-operatively. All cases used either 7 or 7.3mm partially threaded screws in the following configurations: 2 in triangle apex superior, 39 triangle apex inferior, 22 rhomboid and 2 other, with 9 cases using washers. All reductions were performed closed.

Five (8%) of our patients were lost to follow-up as they moved out of area, 48 (74%) had no surgical complications, seven (11%) had mild complications, three (5%) moderate and two (3%) developed AVN. Both of these sustained displaced fractures with low mechanism of injury, were female, ASA 2 and both ex-smokers. One received three screws in apex inferior configuration and one rhomboid, neither fixed with washers.

Our AVN rate following intracapsular hip fracture fixation with cannulated screws is much lower than widely accepted. This study is under-powered to comment on factors which may contribute to the development of AVN. However, we can confidently say that our practice has led to low rates of AVN. This may be due to our method of fixation; we use three screws in an apex inferior triangle or four screws in a rhomboid, our consultant-led operations, closed reduction of all fractures, or our operative technique. We pass a short thread cannulated screw across the least comminuted aspect of the fracture first in order to achieve compression, followed by two or three more screws (depending on individual anatomy) to form a stable construct. Our series shows that fixation of intracapsular hip fractures with cannulated screws as we have outlined remains an excellent option. Patients retain their native hip, have a low rate of AVN, and avoid the risks of open reduction.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 19 - 19
1 May 2017
Descamps S Awitor O Raspal V Erivan R Boisgard S
Full Access

Background

Medical applications of nanotechnology are promising because it allows the surface of biomaterial to be tailored to optimise the interfacial interaction between the biomaterial and its biological environment. Such interfaces are of interest in the domain of orthopaedic surgery as they could have anti-bacterial functions or could be used as drug delivery systems. The development of orthopaedics is moving towards better integration of biology in implants and surgical techniques, but the mechanical properties of implanted materials are still important for orthopaedic applications. During clinical implantation, implants are subjected to large mechanical stresses. In order to obtain the best performance during clinical use, mechanical properties of implants need to be investigated and understood.

Method

We modified the topography of commercial titanium orthopaedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterised using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and 80 cN·m. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 93 - 93
1 Apr 2017
Karaaslan A Karakaşlı A Ertem F Aycan H
Full Access

Background

Intramedullary nailing is a widely accepted treatment method for femoral fractures. Failure of locking screws is often a threatening complication, particularly on comminuted fractures. For comminuted fractures, the locking nails are load-bearing devices. The load transfer between fractured fragments is made through especially the locking screws for these load bearing situations. Nonunion, malunion, delayed union, shortening, and nail migration are the expected results if early failure of locking screws is present with comminuted fractures. In this study our aim was to compare the bending resistance of titanium and stainless steel locking screws.

Methods

We tested 60 locking screws in six groups (titanium, stainless steel, unthreaded, low threaded and high threaded) in a steel tube that has 30 mm inner diameter, which imitates the lesser trochanter level. We determined the yield points at three-point bending tests that permanent deformation started in the locking screws using an axial compression testing machine.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 12 - 12
1 Jan 2017
Hoffmann-Fliri L Hagen J Agarwal Y Scherrer S Weber A Altmann M Windolf M Gueorguiev B
Full Access

Hip fractures constitute the most debilitating complication of osteoporosis with a steadily increasing incidence in an aging population. Intramedullary nailing of osteoporotic proximal femoral fractures can be challenging because of poor implant anchorage in the femoral head. Recently, cement augmentation of PFNA blades with Polymethylmethycrylate (PMMA) has shown promising results by enhancing the cutout resistance in proximal femoral fractures. The aim of this biomechanical study was to assess the impact of cement augmentation on the fixation strength of TFNA blades and screws within the femoral head, and compare its effect with head elements placed in a center or antero–posterior off–center positions.

Eight groups were formed out of 96 polyurethane foam specimens with low density, simulating isolated femoral heads with severe osteoporotic bone. The specimens in each group were implanted with either non–augmented or PMMA–augmented TFNA blades or screws in a center or antero–posterior off–center position, 7 mm anterior or 7 mm posterior. They were mechanically tested in a setup simulating an unstable pertrochanteric fracture with lack of postero–medial support and load sharing at the fracture gap. All specimens underwent progressively increasing cyclic loading until catastrophic construct failure. Varus–valgus and head rotation angles were monitored by an inclinometer mounted on the head. A varus collapse of 5° or a 10° head rotation were defined as the clinically relevant failure criterion.

Load at failure for specimens with augmented TFNA head elements (screw center: 3799 N ± 326 (mean ± SD); blade center: 3228 N ± 478; screw off–center: 2680 N ± 182; blade off–center: 2591 N ± 244) was significantly higher compared to the respective non–augmented specimens (blade center: 1489 N ± 41; screw center: 1593 N ± 120; blade off–center: 1018 N ± 48; screw off–center: 515 N ± 73), p<0.001. In both non–augmented and augmented specimens, the failure load in center position was significantly higher compared to the respective off–center position, regardless of head element, p<0.001. Non–augmented TFNA blades in off–center position revealed significantly higher load at failure versus non–augmented screws in off–center position, p<0.001.

Cement augmentation clearly enhances fixation stability of TFNA blades and screws. Non–augmented blades outperformed screws in antero–posterior off–center position. Positioning of TFNA blades in the femoral head is more forgiving than TFNA screws in terms of failure load. Augmentation with TFNA has not been approved by FDA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 76 - 76
1 Apr 2018
Cristofolini L Morellato K Soffiatti R Rotini R Guerra E
Full Access

Introduction

The standard treatment of proximal humerus fractures includes pre-contoured metal plates and up to nine cortical and trabecular screws. Frequent failures are reported, especially in case of poor bone quality. The scope of this study was to assess the strength of an innovative reconstruction technique (Cement-and-screws) based on a commercial plate, with a reduced number of screws compared to the standard, and with the injection of a beta-TCP additivated acrylic bone cement (Cal-Cemex, Tecres, Italy). The focus was on a four-fragment fracture of the proximal humerus, in combination with a bone defect. For comparison, also a standard technique, based on a commercial system of plate and screws was tested (Screws-only).

Materials and Methods

Six pairs of cadaveric humeri were obtained through an ethically-approved donation program. The humeri were osteotomized to simulate a reproducible four-fragment fracture with the aid of a dedicated jig. Preparation included the simulation of a bone defect in the humeral head. One humerus of each pair was randomly assigned to one of two reconstruction techniques: (i) cement-and-screws humeri were repaired with a commercial fixation plate, 2 cortical and 3 trabecular screws (Philos, DePuy Synthes), and with injection of an acrylic cement additivated with beta-TCP (Cal-Cemex, Tecres); (ii) for comparison, screws-only humeri were prepared with the same commercial plate, 2 cortical and 6 trabecular screws. The reconstructed humeri underwent a biomechanical test. An axial force was cyclically applied, where the load magnitude started at 140 N and increased by 1% at each cycle. Failure was defined as fragment motion exceeding 8 mm.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 13 - 13
1 Jan 2017
Zarattini G Salvi A Pazzaglia U
Full Access

The development and introduction of the closed locked intramedullary nail into clinical practice has revolutionized the treatment of fractures of long bone. The most difficult and technically demanding part of the procedure is often the insertion of the distal interlocking screws. A lot of efforts have been made during the past years to make it easier. In according with Whatling and Nokes, we can divide the different approaches to this issue in four main groups:

Free-hand (FH) technique;

Mechanical targeting devices mounted on image intensifier;

Mechanical targeting devices mounted onto nail handle;

Computer-assisted techniques.

In addition of these, recently it has been proposed a navigational system using electromagnetic field.

The main disadvantages of the FH technique, are prolonged exposure to radiation and results depend mostly on the dexterity of the surgeons. FH technique is however the most popular technique.

Our targeting device is included into the mounted on image intensifier group. It consists of 2 radio-opaque rods at right angle to each over: one of this is fixed on the c-arm, whereas, the other is a sliding rod with a sleeve for the drill bit, which is the targeting guide itself. In the realization of this device, we have been inspired by the modification of the FH technique suggested by Kelley et al. To identify the distal holes we used the method described by Medoff (perfect circle). Once that the distal hole is seen as a perfect circle, with the C-arm in later view, the targeting guide is roughly positioned onto this and the drilling and the screwing operations are performed without the need for image intensifier. We used the device in bone models and in 9 clinical cases.

In spite of authors demonstrated that the electromagnetic targeting device significantly reduced radiation exposure during placement of distal interlocking screws and was equivalent in accuracy when compared with the FH technique, the latter is the most used technique. Indeed, although all the studies have reported that the radiation exposure to orthopedic surgeon has been below the maximum allowable doses in all cases, there is still the risk of cumulative lifetime radiation exposure. From this point of view, namely the reduction of cumulative lifetime radiation exposure, we think that, paradoxically, our device could be more effective than electromagnetic targeting device, because it can be used in all the orthopedic operations that required a targeting device.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 123 - 123
1 Jan 2017
Parchi P Andreani L Evangelisti G Carbone M Condino S Ferrari V Lisanti M
Full Access

Pedicle screws fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. However their positioning remain difficult due to variation in anatomical shape, dimensions and orientation, which can determine the inefficacy of treatment or severe damages to close neurologic structures. Image guided navigation allows to drastically decrease errors in screw placement but it is used only by few surgeons due to its cost and troubles related to its using, like the need of a localizer in the surgical scenario and the need of a registration procedure. An alternative image guided approach, less expensive and less complex, is the using of patient specific templates similar to the ones used for dental implants or knee prosthesis.

Like proposed by other authors we decided to design the templates using CT scans. (slice thickness of 2.0 mm). Template developing is done, for each vertebra, using a modified version of ITK-SNAP 1.5 segmentation software, which allow to insert cylinders (full or empty) in the segmented images. At first we segment the spine bone and then the surgeon chose screw axes using the same software. We design each template with two hollow cylinders aligned with the axes, to guide the insertion in the pedicle, adding contact points that fit on the vertebra, to obtain a template right positioning. Finally we realize the templates in ABS using rapid prototyping. After same in-vitro tests, using a synthetic spine (by Sawbones), we studied a solution to guarantee template stability with simple positioning and minimizing intervention invasiveness. Preliminary ex-vivo animal testing on porcine specimens has been conducted to evaluate template performance in presence of soft-tissue in place, simulating dissection and vertebra exposure. For verification, the surgeon examined post-operative CT-scans to evaluate Kirschner wires positioning.

During the ex-vivo animal test sessions, template alignment resulted easy thanks to the spinous process contact point. Their insertion required no additional tissue removal respect to the traditional approach. The positioning of contact points on vertebra's lamina and articular processes required just to shift the soft tissue under the cylinders bases. The surgeon in some cases evaluated false stable template positions since not each of the 4 contact points were actually in contact with the bone surface and tried the right position. CT evaluation demonstrate a positive results in 96.5% of the Kirschner wires implanted.

Our approach allows to obtain patient specific templates that does not require the complete removal of soft tissue around vertebra. Guide positioning is facilitated thanks to the using of the spinous processes contact point, while false stable positions can be avoided using four redundant contact points. The templates can be used to guide the drill, the insertion of Kirschner in case of use of cannulated screws or to guide directly the screw. After these preliminary ex-vivo animal tests we obtained the authorization of the Italian Health Ministry to start the human study.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 17 - 17
1 Oct 2016
Leslie LJ Heaven G Swadener JG Junaid S Theivendran K Deshmukh SC
Full Access

Currently available fracture fixation devices that were originally developed for healthy bone are often not effective for patients with osteoporosis. Resulting outcomes are unsatisfactory, with longer recovery times, often requiring re-surgery for failed cases. One major issue is the design of bone screws, which can loosen or pull-out from osteoporotic bone. Design improvements are possible, but the development of new screws is a lengthy and expensive process due to the manufacture of the complex geometry involved. The aim of this research was to validate our currently available 3D printing technology in the design, manufacture and testing of screws.

Three standard wood screw designs were reverse-engineered using computational modelling and then fabricated in polymeric resin using 3D rapid prototyping on a Stereolithography (SLA) machine. The original metal screws and the 3D screws (n=5 of each) were then inserted into a synthetic bone block (Sawbones, PCF5) representing the mechanical properties of severely osteoporotic cancellous bone. Pull-out tests were conducted in accordance with ASTM 543-13.

The three metal screws exhibited pull-out strengths of 125, 74 and 118 N respectively. The 3D printed screws by comparison showed pull-out strengths approximately 15–20 % lower than their metal counterparts. However, when the results were normalised to the material tested, showing the relative changes to the first design, the pattern of results in the metal and 3D printed groups were almost identical (within 3 % of each other), showing excellent correlation.

This study is the first to show that 3D Rapid Prototyping can be used in the pre-clinical testing of orthopaedic screws. The methodology provides a cheaper, faster development process for screws, allowing huge scope for development and improvement. Future work will include expanding the study to include more screw configurations as well as testing in higher density foams to compare performance in healthier bone.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 28 - 28
1 May 2017
Woods S Vidakovic I Alloush A Mayahi R
Full Access

Background

Intracapsular neck of femur fractures are one of the most common injuries seen in Orthopaedics. When the fracture is amenable to internal fixation there are 2 main treatment options, namely multiple cannulated hip screws (MCS) and 2-hole sliding hip screws (SHS). In this retrospective study we examine the outcomes associated with these two methods of internal fixation. At present there is little consensus regarding which treatment should be used

Methods

161 patients were found to have suffered intracapsular neck of femur fracture treated with either SHS or MCS fixation over a 5 year period from April 2009 to April 2014, allowing at least 1 year follow up following injury. The patients imaging and clinical notes were then reviewed to ascertain the outcome of their treatment and any complications.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 48 - 48
1 Apr 2017
Karakaşlı A Özcanhan M Karaaslan A Özmanevra R Ertem F Yıldız D
Full Access

Background

Femur fracture fixation systems depend on the stability of the supporting cortical screws, inside the host bone. Only a few works have studied the stability of cortical screws in femur shafts and compared their results with previous studies.

Methods

In present study, five different cortical screw types are assessed using artificial femurs, under equated testing conditions. The maximum force needed to cause screw-bone inter face failure was measured, for each screw type by pullout tests. The obtained results were normalised according to traditional methods and cross-compared. The best performer was searched for and the effect of screw dimensions on the screw performance was investigated. To make the pullout tests solely dependent on screw dimensions, the effect of the bicortical bone thickness was eliminated by equating the conditions of screw insertion.