Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 28 - 28
1 May 2017
Woods S Vidakovic I Alloush A Mayahi R
Full Access

Background

Intracapsular neck of femur fractures are one of the most common injuries seen in Orthopaedics. When the fracture is amenable to internal fixation there are 2 main treatment options, namely multiple cannulated hip screws (MCS) and 2-hole sliding hip screws (SHS). In this retrospective study we examine the outcomes associated with these two methods of internal fixation. At present there is little consensus regarding which treatment should be used

Methods

161 patients were found to have suffered intracapsular neck of femur fracture treated with either SHS or MCS fixation over a 5 year period from April 2009 to April 2014, allowing at least 1 year follow up following injury. The patients imaging and clinical notes were then reviewed to ascertain the outcome of their treatment and any complications.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 9 - 9
1 Jan 2017
Pegg E Gill H MacLeod A
Full Access

Femoral head collapse is a possible complication after surgical treatment of femoral neck fractures. The purpose of this study was to examine whether implantation of a Sliding Hip Screw (SHS) or an X-Bolt could increase the risk of femoral head collapse. Similar to traditional hip screws, the X-Bolt is implanted through the femoral neck; however, it uses an expanding cross-shape to improve rotational stability. The risk of collapse was investigated alongside patient factors, such as osteonecrosis. This numerical study assessed the risk of femoral head collapse using linear eigenvalue buckling (an established method [1]), and also from the maximum von Mises stress within the cortical bone. The femoral head was loaded using the pressures reported by Yoshida et al. for a patient sitting down (reported to put the femoral head at greatest risk of collapse [2]), with a peak pressure of 9.4 MPa and an average pressure of 1.59 MPa. The femur was fixed in all degrees of freedom at a plane through the femoral neck. The X-Bolt and SHS were implanted in accordance with the operative techniques. The femoral head and implants were meshed with quadratic tetrahedral elements, and cortical bone was meshed with triangular thin shell elements. A converged mesh seeding density of 1.2 mm was used. All models were create and solved using ABAQUS finite element software (version 6.12, Simulia, Dassault Systèmes, France). The influence of implant type and presence was examined alongside a variety of patient factors:. Osteonecrosis, modelled as a cone of bone of varying angle, and varying modulus values. Cortical thinning. Reduced cortical modulus. Femoral head size. Twenty-two finite element models were run for each implant condition (intact; implanted with the X-Bolt; implanted with a SHS), resulting in a total of 66 models. The finite element models were validated using experimental tests performed on five 4. th. generation composite Sawbones femurs (Malmö, Sweden), and verified against previously published results [1]. No significant difference was found between the X-Bolt and the SHS, for either critical buckling pressure (p=0.964), or the maximum von Mises stress (p=0.274), indicating no difference in the risk of femoral head collapse. The maximum von Mises stress (and therefore the risk of collapse) within the cortical bone was significantly higher for the intact femoral head compared to both implants (X-Bolt: p=0.048, SHS: p=0.002). Of the factors examined, necrosis of the femoral head caused the greatest increase in risk. The study by Volokh et al. [1] concluded that deterioration of the cancellous bone underneath the cortical shell can greatly increase the risk of femoral head collapse, and the results of the present study support this finding. Interestingly the presence of either an X-Bolt or SHS implant appeared to reduce the risk of femoral head collapse