Advertisement for orthosearch.org.uk
Results 1 - 20 of 263
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 232 - 239
1 Mar 2024
Osmani HT Nicolaou N Anand S Gower J Metcalfe A McDonnell S

Aims. To identify unanswered questions about the prevention, diagnosis, treatment, and rehabilitation and delivery of care of first-time soft-tissue knee injuries (ligament injuries, patella dislocations, meniscal injuries, and articular cartilage) in children (aged 12 years and older) and adults. Methods. The James Lind Alliance (JLA) methodology for Priority Setting Partnerships was followed. An initial survey invited patients and healthcare professionals from the UK to submit any uncertainties regarding soft-tissue knee injury prevention, diagnosis, treatment, and rehabilitation and delivery of care. Over 1,000 questions were received. From these, 74 questions (identifying common concerns) were formulated and checked against the best available evidence. An interim survey was then conducted and 27 questions were taken forward to the final workshop, held in January 2023, where they were discussed, ranked, and scored in multiple rounds of prioritization. This was conducted by healthcare professionals, patients, and carers. Results. The top ten included questions regarding prevention, diagnosis, treatment, and rehabilitation. The number one question was, ‘How urgently do soft-tissue knee injuries need to be treated for the best outcome?’. This reflects the concerns of patients, carers, and the wider multidisciplinary team. Conclusion. This validated process has generated ten important priorities for future soft-tissue knee injury research. These have been submitted to the National Institute for Health and Care Research. All 27 questions in the final workshop have been published on the JLA website. Cite this article: Bone Joint J 2024;106-B(3):232–239


Bone & Joint Open
Vol. 5, Issue 11 | Pages 984 - 991
6 Nov 2024
Molloy T Gompels B McDonnell S

Aims. This Delphi study assessed the challenges of diagnosing soft-tissue knee injuries (STKIs) in acute settings among orthopaedic healthcare stakeholders. Methods. This modified e-Delphi study consisted of three rounds and involved 32 orthopaedic healthcare stakeholders, including physiotherapists, emergency nurse practitioners, sports medicine physicians, radiologists, orthopaedic registrars, and orthopaedic consultants. The perceived importance of diagnostic components relevant to STKIs included patient and external risk factors, clinical signs and symptoms, special clinical tests, and diagnostic imaging methods. Each round required scoring and ranking various items on a ten-point Likert scale. The items were refined as each round progressed. The study produced rankings of perceived importance across the various diagnostic components. Results. In Round 1, the study revealed widespread variability in stakeholder opinions on diagnostic components of STKIs. Round 2 identified patterns in the perceived importance of specific items within each diagnostic component. Round 3 produced rankings of perceived item importance within each diagnostic component. Noteworthy findings include the challenges associated with accurate and readily available diagnostic methods in acute care settings, the consistent acknowledgment of the importance of adopting a patient-centred approach to diagnosis, and the transition from divergent to convergent opinions between Rounds 2 and 3. Conclusion. This study highlights the potential for a paradigm shift in acute STKI diagnosis, where variability in the understanding of STKI diagnostic components may be addressed by establishing a uniform, evidence-based framework for evaluating these injuries. Cite this article: Bone Jt Open 2024;5(11):984–991


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 604 - 612
1 May 2022
MacDessi SJ Wood JA Diwan A Harris IA

Aims. Intraoperative pressure sensors allow surgeons to quantify soft-tissue balance during total knee arthroplasty (TKA). The aim of this study was to determine whether using sensors to achieve soft-tissue balance was more effective than manual balancing in improving outcomes in TKA. Methods. A multicentre randomized trial compared the outcomes of sensor balancing (SB) with manual balancing (MB) in 250 patients (285 TKAs). The primary outcome measure was the mean difference in the four Knee injury and Osteoarthritis Outcome Score subscales (ΔKOOS. 4. ) in the two groups, comparing the preoperative and two-year scores. Secondary outcomes included intraoperative balance data, additional patient-reported outcome measures (PROMs), and functional measures. Results. There was no significant difference in ΔKOOS. 4. between the two groups at two years (mean difference 0.4 points (95% confidence interval (CI) -4.6 to 5.4); p = 0.869), and multiple regression found that SB was not associated with a significant ΔKOOS. 4. (0.2-point increase (95% CI -5.1 to 4.6); p = 0.924). There were no significant differences between groups in other PROMs. Six-minute walking distance was significantly increased in the SB group (mean difference 29 metres; p = 0.015). Four-times as many TKAs were unbalanced in the MB group (36.8% MB vs 9.4% SB; p < 0.001). Irrespective of group assignment, no differences were found in any PROM when increasing ICPD thresholds defined balance. Conclusion. Despite improved quantitative soft-tissue balance, the use of sensors intraoperatively did not differentially improve the clinical or functional outcomes two years after TKA. These results question whether a more precisely balanced TKA that is guided by sensor data, and often achieved by more balancing interventions, will ultimately have a significant effect on clinical outcomes. Cite this article: Bone Joint J 2022;104-B(5):604–612


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 507 - 514
1 Mar 2021
Chang JS Kayani B Wallace C Haddad FS

Aims. Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. Methods. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°). Results. TKA with functional alignment achieved balanced medial and lateral compartment pressures at 10° (25.0 psi (SD 6.1) vs 23.1 psi (SD 6.7), respectively; p = 0.140), 45° (21.4 psi (SD 5.9) vs 20.6 psi (SD 5.9), respectively; p = 0.510), and 90° (21.2 psi (SD 7.1) vs 21.6 psi (SD 9.0), respectively; p = 0.800) of knee flexion. Mean ICPD was 6.1 psi (SD 4.5; 0 to 14) at 10°, 5.4 psi (SD 3.9; 0 to 12) at 45°, and 4.9 psi (SD 4.45; 0 to 15) at 90° of knee flexion. Mean postoperative limb alignment was 2.2° varus (SD 1.0°). Conclusion. TKA using the functional alignment achieves balanced mediolateral soft-tissue tension through the arc of knee flexion as assessed using intraoperative pressure-sensor technology. Further clinical trials are required to determine if TKA with functional alignment translates to improvements in patient satisfaction and outcomes compared to conventional alignment techniques. Cite this article: Bone Joint J 2021;103-B(3):507–514


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_12 | Pages 3 - 3
1 Oct 2018
Catani F Zambianchi F Marcovigi A Franceschi G Nardacchione R
Full Access

Introduction. Robotic technology has been applied to unicompartmental knee arthroplasty (UKA) in order to improve surgical precision in prosthetic component placement, restore knee anatomic surfaces, and provide a more physiologic ligament tensioning throughout the knee range of motion. Recent literature has demonstrated the reliability of robotic assisted UKA over manual UKA in component placement and executing a soft-tissue tensioning plan. The purpose of this multicenter study was to determine the correlation between 3D component positioning and soft-tissue tensioning with short-term clinical results following robotic assisted medial UKA. Methods. Between 2013 and 2016, 349 patients (381 knees) underwent robotic assisted fixed bearing metal backed medial UKAs at two centres. Follow-up was performed at 12 months minimum. Pre- and post-operatively, patients were administered Knee Injury and Osteoarthritis Score (KOOS), Forgotten Joint Score 12 (FJS), and Short-Form summary scale (SF-12) surveys. Clinical results for every score were stratified as ‘excellent’, ‘mild’ and ‘insufficient’. Post-operative complications were recorded. Failure mechanisms, reoperations and post-operative knee pain were also assessed. Intra-operative robotic data relative to femoral and tibial component placement in the coronal, sagittal and horizontal plane, as well as femoro-tibial gaps at different knee flexion angles were also collected. Results. A total of 338 robotic assisted medial UKAs (309 patients) were assessed at an average follow-up of 33.5 months post-operatively (89% follow-up rate). Three implants were revised, resulting in a survivorship of 99.0% (C.I. 97.0%–99.7%), one for prosthetic joint infection and two for tibial aseptic loosening. All clinical post-operative scores were significantly improved from the pre-operative scores. The following statistically significant correlations were found between intra-operative robotic data and outcomes considered individually: femoral component coronal alignment influenced KOOS Symptoms, Pain and Quality of Life (p<0.05), sagittal alignment influenced KOOS Symptoms and Pain (p<0.05), and femoro-tibial gaps at 20°–30° knee flexion influenced KOOS Pain and Function in Activities of Daily Living (p<0.05). Both, tibial sagittal alignment and femoro-tibial gaps at 80°–90° knee flexion were found to correlate with SF-12 Physical Status and presence of post-operative pain (p<0.01). ‘Excellent’ clinical outcomes were reported by those patients who, on average, had the femur placed in neutral alignment in the coronal and horizontal planes (0.2°±1.5 and 0.6°±1.4 respectively) as well as avoided excessive flexion in the sagittal plane (3.7°±3.2). When considering the tibia, better results were reported by patients with the tibial component placed in slight external rotation (2.2°±1.7), varus coronal alignment (1.5°±1.7) and no more than 5° of posterior slope (5.0°±1.0). Regarding femoro-tibial gaps, ‘excellent’ clinical outcomes were reported by patients who were slightly loose between 20°–30° and 80°–90° of knee flexion. Conclusion. In the present study, survivorship and clinical outcomes of a large cohort of 309 patients with medial robotic assisted UKA were contacted with at a mean 3-years. The overall survivorship was found to be 99%, with tibial component failure as the most common reason for UKA revision. The significant difference between pre- and post-operative clinical scores highlights the efficacy of robotic assisted UKA in restoring knee function and relieving pain. Differences in components’ positioning and soft-tissue tensioning demonstrated significant correlation with post-operative clinical outcomes


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 147 - 150
1 Nov 2012
Gustke K

Smart trials are total knee tibial trial liners with load bearing and alignment sensors that will graphically show quantitative compartment load-bearing forces and component track patterns. These values will demonstrate asymmetrical ligament balancing and misalignments with the medial retinaculum temporarily closed. Currently surgeons use feel and visual estimation of imbalance to assess soft-tissue balancing and tracking with the medial retinaculum open, which results in lower medial compartment loads and a wider anteroposterior tibial tracking pattern. The sensor trial will aid the total knee replacement surgeon in performing soft-tissue balancing by providing quantitative visual feedback of changes in forces while performing the releases incrementally. Initial experience using a smart tibial trial is presented


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 12 - 12
7 Aug 2023
Osmani H Nicolaou N Anand S Metcalfe A McDonnell S
Full Access

Abstract

Introduction

The knee is the most commonly injured joint in sporting accidents. They cause substantial disability, time off work and long-term problems. There remains a limited number of high-quality randomised controlled trials assessing first time, acute soft tissue knee injuries. Key areas requiring answers include prevention, diagnosis, treatment, rehabilitation and delivery of care. In association with the James Lind Alliance, this BASK, BOSTAA and BOA supported prioritising exercise was undertaken over a year.

Methodology

The James Lind Alliance methodology was followed. An initial survey invited patients and healthcare professionals to submit their uncertainties regarding soft tissue knee injury prevention, diagnosis, treatment, rehabilitation and delivery of care. Over 1000 questions were submitted. Seventy-four questions were formulated to encompass common concerns. These were checked against best available evidence. Following the interim survey, 27 questions were taken forward to the final workshop in January 2023, where they were discussed, ranked and scored in multiple rounds of prioritisation by groups of healthcare professionals, patients and carers.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 441 - 447
1 May 1998
Lucas JD O’Doherty MJ Wong JCH Bingham JB McKee PH Fletcher CDM Smith MA

We performed a retrospective analysis to evaluate the ability of whole-body . 18. F-fluorodeoxyglucose positron emission tomography (FDG PET) to identify local recurrence and pulmonary metastases in patients with soft-tissue tumours after treatment. We compared the results of FDG PET with those of MRI for the detection of local recurrence, and with CT of the chest for pulmonary metastases. We assessed 62 patients of mean age 51 years, who had 15 types of soft-tissue sarcoma, after a mean follow-up of 3 years 2 months. For the detection of local disease, 71 comparisons showed that the sensitivity and specificity of FDG PET were 73.7% and 94.3%, respectively; there were 14 true-positive and five false-negative results. MRI had a sensitivity and specificity of 88.2% and 96.0% respectively. For the identification of lung metastases, 70 comparisons showed that the sensitivity and specificity of FDG PET were 86.7% and 100%, with 13 true-positive results and two false-negative results. CT of the chest had a sensitivity and specificity of 100% and 96.4%. Thirteen other sites of metastases were identified by FDG PET. FDG PET can identify both local and distant recurrence of tumour as a one-step procedure and will detect other metastases. It seems that all three methods of imaging are needed to define accurately the extent of disease, both at initial staging and during follow-up


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 97 - 97
1 Jul 2022
Khalefa MA Aujla R Aslam N D'Alessandro P Malik SS
Full Access

Abstract

Introduction

Anterior cruciate ligament reconstruction (ACLR) can be performed with a number of different autografts including all soft tissue quadriceps autograft. (QT). QT has several advantages including decreased donor site morbidity, reduced anterior knee pain and comparable revision rates compared to other autografts. The primary aim of this review was to assess all complications of QT in adult population.

Methodology

A systematic review of the literature was conducted on in accordance with the PRISMA guidelines using the online databases Medline and EMBASE. Clinical studies or reporting on soft tissue QT were included and appraised using the Methodological Index for Non-Randomized Studies (MINORS) tool.


We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft–bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL–bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft. Cite this article: Bone Joint J 2013;95-B:923–8


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1324 - 1330
3 Oct 2020
Herregodts S Verhaeghe M Paridaens R Herregodts J Vermue H Arnout N De Baets P Victor J

Aims

Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level.

Methods

A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).


Abstract

Introduction

MRI scanning is the establish method of defining intra- and extra-articular diagnoses of patients with non-arthritic knee problems. Discrepancies in reporting have been noted in previous historic studies and anecdotally. The aim of this study was to analyse the reporting of intra-articular pathology and discrepancies in knee MRI reports by two clinician groups, consultant radiologists and consultant knee surgeons in a district hospital setting.

Methods

A retrospective case-controlled cohort study was conducted using data collected from an outpatient physiotherapy-led knee clinic. Seventy-four patients in the cohort were referred for an MRI scan of their knee(s) following a clinical examination and history. MRI reports from both the consultant knee surgeon and the radiologist were entered into a database with other clinical details. Reports were analysed to determine number of diagnoses and degree of agreement. Each report was deemed to either completely agree, completely disagree or partially agree.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 78 - 83
1 Nov 2014
Gustke KA

Total knee replacement (TKR) smart tibial trials have load-bearing sensors which will show quantitative compartment pressure values and femoral-tibial tracking patterns. Without smart trials, surgeons rely on feel and visual estimation of imbalance to determine if the knee is optimally balanced. Corrective soft-tissue releases are performed with minimal feedback as to what and how much should be released. The smart tibial trials demonstrate graphically where and how much imbalance is present, so that incremental releases can be performed. The smart tibial trials now also incorporate accelerometers which demonstrate the axial alignment. This now allows the surgeon the option to perform a slight recut of the tibia or femur to provide soft-tissue balance without performing soft-tissue releases. Using a smart tibial trial to assist with soft-tissue releases or bone re-cuts, improved patient outcomes have been demonstrated at one year in a multicentre study of 135 patients (135 knees).

Cite this article: Bone Joint J 2014;96-B(11 Suppl A):78–83.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims

It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA).

Methods

We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 25 - 25
1 Oct 2020
Kayani B Tahmassebi J Ayuob A Konan S Oussedik S Haddad FS
Full Access

Introduction

The objectives of this study were to compare the systemic inflammatory reaction, localised thermal response and macroscopic soft tissue injury outcomes in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic total knee arthroplasty (robotic TKA).

Methods

This prospective randomised controlled trial included 30 patients with symptomatic knee osteoarthritis undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localised knee temperature were collected preoperatively and postoperatively at 6 hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned limb alignment and implant positioning in both treatment groups.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1631 - 1636
1 Dec 2014
Parkkinen M Madanat R Mäkinen TJ Mustonen A Koskinen SK Lindahl J

The role of arthroscopy in the treatment of soft-tissue injuries associated with proximal tibial fractures remains debatable. Our hypothesis was that MRI over-diagnoses clinically relevant associated soft-tissue injuries. This prospective study involved 50 consecutive patients who underwent surgical treatment for a split-depression fracture of the lateral tibial condyle (AO/OTA type B3.1). The mean age of patients was 50 years (23 to 86) and 27 (54%) were female. All patients had MRI and arthroscopy. Arthroscopy identified 12 tears of the lateral meniscus, including eight bucket-handle tears that were sutured and four that were resected, as well as six tears of the medial meniscus, of which five were resected. Lateral meniscal injuries were diagnosed on MRI in four of 12 patients, yielding an overall sensitivity of 33% (95% confidence interval (CI) 11 to 65). Specificity was 76% (95% CI 59 to 88), with nine tears diagnosed among 38 menisci that did not contain a tear. MRI identified medial meniscal injuries in four of six patients, yielding an overall sensitivity of 67% (95% CI 24 to 94). Specificity was 66% (95% CI 50 to 79), with 15 tears diagnosed in 44 menisci that did not contain tears.

MRI appears to offer only a marginal benefit as the specificity and sensitivity for diagnosing meniscal injuries are poor in patients with a fracture. There were fewer arthroscopically-confirmed associated lesions than reported previously in MRI studies.

Cite this article: Bone Joint J 2014;96-B:1631–6.


Bone & Joint Open
Vol. 3, Issue 10 | Pages 767 - 776
5 Oct 2022
Jang SJ Kunze KN Brilliant ZR Henson M Mayman DJ Jerabek SA Vigdorchik JM Sculco PK

Aims. Accurate identification of the ankle joint centre is critical for estimating tibial coronal alignment in total knee arthroplasty (TKA). The purpose of the current study was to leverage artificial intelligence (AI) to determine the accuracy and effect of using different radiological anatomical landmarks to quantify mechanical alignment in relation to a traditionally defined radiological ankle centre. Methods. Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A sub-cohort of 250 radiographs were annotated for landmarks relevant to knee alignment and used to train a deep learning (U-Net) workflow for angle calculation on the entire database. The radiological ankle centre was defined as the midpoint of the superior talus edge/tibial plafond. Knee alignment (hip-knee-ankle angle) was compared against 1) midpoint of the most prominent malleoli points, 2) midpoint of the soft-tissue overlying malleoli, and 3) midpoint of the soft-tissue sulcus above the malleoli. Results. A total of 932 bilateral full-limb radiographs (1,864 knees) were measured at a rate of 20.63 seconds/image. The knee alignment using the radiological ankle centre was accurate against ground truth radiologist measurements (inter-class correlation coefficient (ICC) = 0.99 (0.98 to 0.99)). Compared to the radiological ankle centre, the mean midpoint of the malleoli was 2.3 mm (SD 1.3) lateral and 5.2 mm (SD 2.4) distal, shifting alignment by 0.34. o. (SD 2.4. o. ) valgus, whereas the midpoint of the soft-tissue sulcus was 4.69 mm (SD 3.55) lateral and 32.4 mm (SD 12.4) proximal, shifting alignment by 0.65. o. (SD 0.55. o. ) valgus. On the intermalleolar line, measuring a point at 46% (SD 2%) of the intermalleolar width from the medial malleoli (2.38 mm medial adjustment from midpoint) resulted in knee alignment identical to using the radiological ankle centre. Conclusion. The current study leveraged AI to create a consistent and objective model that can estimate patient-specific adjustments necessary for optimal landmark usage in extramedullary and computer-guided navigation for tibial coronal alignment to match radiological planning. Cite this article: Bone Jt Open 2022;3(10):767–776


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1067 - 1073
1 Oct 2024
Lodge CJ Adlan A Nandra RS Kaur J Jeys L Stevenson JD

Aims. Periprosthetic joint infection (PJI) is a challenging complication of any arthroplasty procedure. We reviewed our use of static antibiotic-loaded cement spacers (ABLCSs) for staged management of PJI where segmental bone loss, ligamentous instability, or soft-tissue defects necessitate a static construct. We reviewed factors contributing to their failure and techniques to avoid these complications when using ABLCSs in this context. Methods. A retrospective analysis was conducted of 94 patients undergoing first-stage revision of an infected knee prosthesis between September 2007 and January 2020 at a single institution. Radiographs and clinical records were used to assess and classify the incidence and causes of static spacer failure. Of the 94 cases, there were 19 primary total knee arthroplasties (TKAs), ten revision TKAs (varus-valgus constraint), 20 hinged TKAs, one arthrodesis (nail), one failed spacer (performed elsewhere), 21 distal femoral endoprosthetic arthroplasties, and 22 proximal tibial arthroplasties. Results. A total of 35/94 patients (37.2%) had spacer-related complications, of which 26/35 complications (74.3%) were because of mechanical failure of the spacer construct, while 9/35 (25.7%) were due to recurrence of infection. Risk factors for internal failure were a construct where the total intramedullary spacer length was less than twice the length of the central osseous defect (p = 0.009), where proximal or distal intraosseous spacer contact was < 10%, and after tibial tubercle osteotomy (p = 0.005). The incidence of spacer complications significantly increased the time to second stage: mean 157 days (42 to 458) in those without complications versus 227 days (11 to 528) with complications (p = 0.014). Conclusion. The failure rate of static antibiotic-loaded cement spacers is much higher than anticipated. Complications of the spacer significantly increased the time to second-stage revision. The risk of mechanical failure is significantly increased if the spacer is less than double the size of the segmental defect, or if inadequate reinforcement is inserted into the residual bone. These findings serve as a guide for surgeons to avoid mechanical complications with static spacers. Cite this article: Bone Joint J 2024;106-B(10):1067–1073


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 680 - 687
1 Jul 2024
Mancino F Fontalis A Grandhi TSP Magan A Plastow R Kayani B Haddad FS

Aims. Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. Methods. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36). Results. There were no differences between the two treatment groups with regard to mean change in haemoglobin concentration (p = 0.477), length of stay (LOS, p = 0.172), mean polyethylene thickness (p = 0.065), or postoperative complication rates (p = 0.295). At the most recent follow-up, the primary robotic arm-assisted TKA group had a statistically significantly improved OKS compared with the revision UKA to TKA group (44.6 (SD 2.7) vs 42.3 (SD 2.5); p = 0.004) but there was no difference in the overall ROM (p = 0.056) or FJS between the two treatment groups (86.1 (SD 9.6) vs 84.1 (4.9); p = 0.439). Conclusion. Robotic arm-assisted revision of UKA to TKA was associated with comparable intraoperative blood loss, early postoperative rehabilitation, functional outcomes, and complications to primary robotic TKA at short-term follow-up. Robotic arm-assisted surgery offers a safe and reproducible technique for revising failed UKA to TKA. Cite this article: Bone Joint J 2024;106-B(7):680–687