Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 807 - 816
1 Jun 2014
Rajaee SS Kanim LEA Bae HW

Using the United States Nationwide Inpatient Sample, we identified national trends in revision spinal fusion along with a comprehensive comparison of comorbidities, inpatient complications and surgical factors of revision spinal fusion compared to primary spinal fusion.

In 2009, there were 410 158 primary spinal fusion discharges and 22 128 revision spinal fusion discharges. Between 2002 and 2009, primary fusion increased at a higher rate compared with revision fusion (56.4% vs 51.0%; p < 0.001). In 2009, the mean length of stay and hospital charges were higher for revision fusion discharges than for primary fusion discharges (4.2 days vs 3.8 days, p < 0.001; USD $91 909 vs. $87 161, p < 0.001). In 2009, recombinant human bone morphogenetic protein (BMP) was used more in revision fusion than in primary fusion (39.6% vs 27.6%, p < 0.001), whereas interbody devices were used less in revision fusion (41.8% vs 56.6%, p < 0.001).

In the multivariable logistic regression model for all spinal fusions, depression (odds ratio (OR) 1.53, p < 0.001), psychotic disorders (OR 1.49, p < 0.001), deficiency anaemias (OR 1.35, p < 0.001) and smoking (OR 1.10, p = 0.006) had a greater chance of occurrence in revision spinal fusion discharges than in primary fusion discharges, adjusting for other variables. In terms of complications, after adjusting for all significant comorbidities, this study found that dural tears (OR 1.41; p < 0.001) and surgical site infections (OR 3.40; p < 0.001) had a greater chance of occurrence in revision spinal fusion discharges than in primary fusion discharges (p < 0.001). A p-value < 0.01 was considered significant in all final analyses.

Cite this article: Bone Joint J 2014;96-B:807–16.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 116 - 116
1 Apr 2012
Pickard R Sharma A Reynolds J Nnadi C Lavy C Bowden G Wilson-MacDonald J Fairbank J
Full Access

A literature review of bone graft substitutes for spinal fusion was undertaken from peer reviewed journals to form a basis for guidelines on their clinical use. A PubMed search of peer reviewed journals between Jan 1960 and Dec 2009 for clinical trials of bone graft substitutes in spinal fusion was performed. Emphasis was placed on RCTs. Small and duplicated RCTs were excluded. If no RCTs were available the next best clinical evidence was assessed. Data were extracted for fusion rates and complications. Of 929 potential spinal fusion studies, 7 RCTs met the inclusion criteria for BMP-2, 3 for BMP-7, 2 for Tricalcium Phosphate and 1 for Tricalcium Phosphate/Hydroxyapatite (TCP/HA). No clinical RCTs were found for Demineralised Bone Matrix (DBM), Calcium Sulphate or Calcium Silicate. There is strong evidence that BMP-2 with TCP/HA achieves similar or higher spinal fusion rates than autograft alone. BMP-7 achieved similar results to autograft. 3 RCTs support the use of TCP or TCP/HA and autograft as a graft extender with similar results to autograft alone. The best clinical evidence to support the use of DBMs are case control studies. The osteoinductive potential of DBM appears to be very low however. There are no clinical studies to support the use of Calcium Silicate. The current literature supports the use of BMP-2 with HA/TCP as a graft substitute. TCP or HA/TCP with Autograft is supported as a graft extender. There is not enough clinical evidence to support other bone graft substitutes. This study did not require ethics approval and no financial support was received


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 69 - 69
1 Jun 2018
Rosenberg A
Full Access

Nutritional Status and Short-Term Outcomes Following THA; Initial Metal Ion Levels Predict Risk in MoM THA; THA Bearing Surface Trends in the US ‘07- ’14; Dislocation Following Two-Stage Revision THA; Timing of Primary THA Prior to or After Lumbar Spine Fusion; Failure Rate of Failed Constrained Liner Revision; ESR and CRP vs. Reinfection Risk in Two-Stage Revision?; Mechanical Complications of THA Based on Approach; Impaction Force and Taper-Trunnion Stability in THA; TKA in Patients Less Than 50 Years of Age; Post-operative Mechanical Axis and 20-year TKA Survival and Function; Return to Moderate to High-intensity Sports after UKA; “Running Two Rooms” and Patient Safety in TJA; Varus and Implant Migration and Contact Kinematics after TKA; Quadriceps Snips in 321 Revision TKAs; Tubercle Proximalization for Patella Infera in Revision TKA; Anterior Condylar Height and Flexion in TKA; Compression Bandage Following Primary TKA; Unsupervised Exercise vs. Traditional PT After Primary TKA and UKA


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_III | Pages 193 - 193
1 Mar 2003
Laursen M Christensen F Hansen E Høy K Gelineck J Niedermann B Helmig P Bünger C
Full Access

Introduction: In the attempt to improve fusion rates in spondylodesis surgery, focus has been applied on numerous factors, including surgical strategies, instrumentation-devices and –material, technical preparation of the fusion bed, stringency of radiological outcome criteria, patient-related factors such as age, sex, tobacco consumption, and severity of underlying pathology. In recent years the development of new techniques for exploring mechanisms in cellular and molecular biology have further directed focus toward more advanced biological techniques and considerations. To the authors’ knowledge, little or no attention has been focused on one of the basic and important factors in the attempt to achieve fusion, ie the impact of bone graft quantity placed at the fusion bed. The aim of this study was to investigate the influence of autologous bone graft quantity in posterolateral instrumented spinal fusion (PLF) in respect to fusion rates. Methods and results: A prospective clinical study in 76 patients, in which CD-instrumented posterolateral lumbar or lumbosacral spine fusion surgery was performed. The quantity of autologous bone graft applied at the fusion bed was recorded peroperatively. Spinal fusion rates were assessed by AP/lateral radiographs at one-year follow-up by two independent observers, according to our strict classification system. The impact of bone graft quantity, tobacco consumption, age and sex of the patients were analysed in respect to fusion-rates by logistic regression. According to our classification “fusion” was seen in 76% of the patients, “non-union” in 12.7% and “doubtful”fusion in 11.3%. In “fusion” segments, the median amount of bone used was 24.4 (13–53) g and 14.7 (12.5–23.4) g in “non-union” segments. The “non-union” rate was 7.1% for non-smokers in contrast to 21.4% for patients who smoked during the first six post-operative months. The impact on fusion rates by graft quantity and cigarette smoking were significant, p< 0.006 respectively 0.035. Age and gender did not influence fusion rates. Thirty-three percent of patients with “non-union” had a corresponding failure of the implant. Conclusions: The quantity of graft used at the fusion bed is critical for successful fusion. Based on the results presented here, we recommend a minimum of 24 g of autogenous bone graft at each intervention segment in auto-grafted posterolateral spinal spondylodesis surgery. In addition, this study underlines the importance of tobacco arrest, in at least the first six post-operative months. The data presented here strongly support the importance of quantifying or optimally standardising the amount of graft placed at each intervention segment


Aims

Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones.

Methods

Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 209 - 210
1 Mar 2010
Harris I Dao A
Full Access

This study aims to explore the trend in spine fusion surgery in Australia over the past 10 years and to explore the possible influence of health insurance status (private versus public) on the rate of surgery. Data pertaining to the rate of lumbar spine fusion from 1997 to 2006 were collected. Data on publicly performed procedures in NSW were obtained from Inpatient Statistics Collection of NSW Health, and data on privately performed procedures were obtained from Medicare Australia Statistics. Population data was obtained from the Australian Bureau of Statistics. Data on total hip and total knee arthroplasties performed were collected to provide a comparator. Health insurance coverage was also investigated to control for insurance status, this data was obtained from the Private Health Insurance Administration Council. There has been a slowly declining trend in the number of publicly performed spinal fusion procedures over the past 10 years, falling by 63% from 1997 to 2006 in NSW. In comparison, privately performed spinal fusion procedures have increased by 166% over the same 10 year period. Compared to spine fusion, the rates of total hip and total knee replacement procedures in the public sector of NSW have fallen by smaller proportions (58.9%% and 42.1%, respectively) over the same 10 year period. The increase in privately performed joint replacements has been less than that seen for spine fusion, with increases of 120% and 74%% for knee arthroplasties and hip arthroplasties, respectively. In 2006, spine fusion surgery was 10.8 times more likely to be done in the private sector than in the public sector, compared to corresponding figures of 4.2 times and 3.0 times for knee replacement and hip replacement, respectively. Our study has demonstrated that there is a disproportionately high rate of spine fusion procedures performed in the private sector. Possible explanations for this difference include: over servicing in the private sector, under servicing in the public sector, differences in medical referral patterns, surgeon and patient preferences, and financial incentives


Bone & Joint 360
Vol. 8, Issue 3 | Pages 29 - 31
1 Jun 2019


Bone & Joint 360
Vol. 6, Issue 6 | Pages 28 - 31
1 Dec 2017