Introduction. This is the first study to illustrate spinal fracture distribution and the impact of different injury mechanisms on the spinal column during contemporary warfare. Methods Retrospective analysis of Computed Tomography (CT) spinal images entered onto the Centre for Defence Imaging (CDI) database, 2005-2009. Isolated spinous and transverse process fractures were excluded to allow focus on cases with implications for immediate management and prospective disability burden. Fractures were classified by anatomical level and stability with validated systems. Clinical data regarding mechanism of injury and associated non-spinal injuries for each patient was recorded. Statistical analysis was performed by Fisher's Exact test. Results 57 cases (128 fractures) were analysed. Ballistic (79%) and non-ballistic (21%) mechanisms contribute to vertebral fracture and
We have reviewed our experience in managing 11 patients who sustained an indirect sternal fracture in combination with an upper thoracic spinal injury between 2003 and 2006. These fractures have previously been described as ‘associated’ fractures, but since the upper thorax is an anatomical entity composed of the upper thoracic spine, ribs and sternum joined together, we feel that the term ‘fractures of the upper transthoracic cage’ is a better description. These injuries are a challenge because they are unusual and easily overlooked. They require a systematic clinical and radiological examination to identify both lesions. This high-energy trauma gives severe devastating concomitant injuries and CT with contrast and reconstruction is essential after resuscitation to confirm the presence of all the lesions. The injury level occurs principally at T4–T5 and at the manubriosternal joint. These unstable fractures need early posterior stabilisation and fusion or, if treated conservatively, a very close follow-up.