There is evidence that various anatomical structures have altered morphology with ageing, and anecdotal evidence of changing lumbar
The purpose of this study was to establish the relationship between the anterior and posterior spinal elements and identify which morphological changes in the ageing spine has the greatest influence in determining the loss of lumbar lordosis. Method. 224 patients' (98 male, 126 female) erect plain lumbar radiographs were reviewed. Lateral plane projections were used to measure the lumbar angle (lordosis),
Auckland City Hospital, Auckland, New Zealand. To show that the
To observe the safety and efficacy of a minimally destructive decompressive technique without fusion in patients with lumbar stenosis secondary to degenerative spondylolisthesis. 30 patients with degenerative spondylolisthesis (DS) were consecutively managed by a single consultant spinal surgeon. All patients presented with neurogenic claudication secondary to DS. All patients were managed operatively with lumbar decompression utilising an approach technique of “spinous process osteotomy” (1). Briefly, this approach requires only unilateral muscle stripping with preservation of the interspinous ligament. A standard centrolateral decompression is then performed. Data consisting of VAS back and leg pain and ODI were collected pre and post-operatively.Purpose
Methods
Posterior lumbar interbody fusion (PLIF) is indicated
for many patients with pain and/or instability of the lumbar spine.
We performed 36 PLIF procedures using the patient’s lumbar spinous
process and laminae, which were inserted as a bone graft between
two vertebral bodies without using a cage. The mean lumbar lordosis
and mean disc height to vertebral body ratio were restored and preserved
after surgery. There were no serious complications. These results suggest that this procedure is safe and effective.
Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a human cadaveric specimen, as excellent decompression was confirmed by postoperative CT imaging. Subsequently, the workflow was applied clinically in a patient with severe spinal stenosis. Excellent decompression was achieved intraoperatively and preservation of the dorsal midline structures was confirmed on postoperative MRI. The patient experienced improvement in symptoms postoperatively and was discharged within 24 hours. Conclusion. Minimally invasive robotic-assisted lumbar decompression utilizing a specialized robotic bone removal instrument was shown to be accurate and effective both in vitro and in vivo. The robotic bone removal technique has the potential for less invasive removal of laminar bone for spinal decompression, all the while preserving the
Posterior cervical wiring is commonly performed for patients with spinal instability, but has inherent risks. We report eight patients who had neurological deterioration after sublaminar or
We describe the results of a prospective case series of patients with spondylolysis, evaluating a technique of direct stabilisation of the pars interarticularis with a construct that consists of a pair of pedicle screws connected by a U-shaped modular link passing beneath the
To describe a modification of the existing technique for C2 translaminar screw fixation that can be used for salvage in difficult cases. Bilateral crossing C2 laminar screws have recently become popular as an alternative technique for C2 fixation. This technique is particularly useful in patients with anomalous anatomy, as a salvage technique where other modes of fixation have failed or as a primary procedure. However, reported disadvantages of this technique include breach of the dorsal lamina and spinal canal, early hardware failure and difficulty in bone graft placement due to the position of the polyaxial screw heads. To address some of these issues, a modified technique is described. In this technique, the upper part of the
Introduction. Chronic low back pain (LBP) is globally recognised as a leading cause of disability, with a global point-prevalence of 540 million people experiencing ‘activity-limiting’ LBP. A lack of muscle endurance is common in people with LBP, however the mechanisms underlying reduced endurance remain unclear. This study utilised high-density EMG (HDEMG) to evaluate differences in the spatial distribution and redistribution of lumbar erector spinae (ES) activity during an endurance task. Methods. Thirteen control (Age:26.46±5.0, 7 Males) and 13 LBP participants (Age:27.39±9.7, 6 Males) were recruited and HDEMG signals were detected from ES unilaterally using a 13×5 electrode grid adhered 2cm lateral to the L5
We describe the results of a prospective case series to evaluate a technique of direct pars repair stabilised with a construct that consists of a pair of pedicle screws connected with a u-shaped modular link that passes beneath the
Our study aims to evaluate the efficacy of Wallis implant in management of discogenic back pain. We have prospectively studied thirty patients between 2006 and 2007. Average age of patients was 40.8 years. Average follow-up period 20.6 months (9-28). Main inclusion criteria includes failure of conservative management of low back pain due to degenerative disc disease, preservation of 50% of the disc height and positive discographic features. In majority of the patients the implant was put in at the level of L4-L5. Pre-op and post op SF36 and Oswestry Disability Index (ODI) scores were assessed during clinic follow-up and by telephonic interview. Mean SF36 score improved from thirty-seven (8.3 – 54.3) to 51.4. Mean ODI improved from forty-three (20-60) to 26.5(2-60) (p = 0.026). Complications including superficial infection occurred in one patient, deep infection in one patient, erosion of
Background. Several theories have been put forward with respect to the mechanical role of the thoracolumbar fascia (TLF) but none have been substantiated in part due to an inability to explore its function in vivo. This study explored the use of ultrasound to image the layers of the TLF in vivo. Methods. Initially a cadaveric dissection of the fascia was performed to gain an appreciation of the 3-D orientation and representation of the TLF in the lumbar region. A conventional ultrasound system (Diasus, Dynamic Imaging Ltd) was then used to image the 3 layers of the fascia on 40 normal subjects (18 males and 22 females, mean age 27.3±5.8 years) and the reliability of these measures was investigated on a subset of this population. Results. Using ultrasound, the posterior and middle layer of the TLF could be readily identified, however it was not possible to visualise the anterior layer due to the limitations of the scanner used. The thickness of the posterior layer ranged from 1.3 ±0.4 to 1.5±0.4 mm depending on location relative to the
Spinal fusion, ending caudally at L5 rather than at the sacrum, is recommended for selected patients with scoliosis due to Duchenne muscular dystrophy. We present a retrospective review of 48 patients operated on for this condition. Patients having spinal curvature with a Cobb angle of less than 40° and with less than 10° between a line tangential to the superior margins of both iliac crests and a line perpendicular to the
8 patients with cervical myelopathy treated by French-door laminoplasty and internal fixation. A novel technique of fixation is employed to provide immediate stability, pain relief and rapid mobilisation. To report the clinical and radiological outcomes of this new fixation device for French–door laminoplasty with minimum follow-up of 30 months. Hardware assisted laminoplasty has the potential advantage of instant stability and prevention of recurring stenosis. The use of titanium mini-plates has been described in open-door laminoplasty and now we describe this technique in French–door laminoplasty. 8 patients with cervical myelopathy secondary to congenital stenosis (2) and multi-level spondylotic myelopathy (6) underwent 2-4 level French–door laminoplasty and mini-plate fixation. The average follow-up was 46.5 months. Autogenous iliac crest bone graft was interposed between the sagittally split
We carried out a prospective study looking at the functional outcome and post-procedure segmental instability after lumbar decompression using a flip osteotomy technique that involved unilateral subperiosteal muscle dissection with hinging of the
The objective of this study was to assess the reliability and appropriateness of statistical shape modelling for capturing variation in thoracic vertebral anatomy for future use in assessing scoliotic vertebral morphology. Magnetic resonance (MR) images of the thoracic vertebrae were acquired from 20 healthy adults (12 female, 8 male) using a 1.5 T MR scanner (Intera, Philips). A T1 weighted spin-echo sequence (repetition time = 294 ms, echo time = 8 ms, number of signal averages = 3) was used. A set of slices (number = 27, thickness = 1.9 mm, gap = 1.63 mm, pixel size = 0.5 mm) were acquired for each vertebrae, parallel to the mid-transverse plane of the vertebral body. Repeated imaging, including participant repositioning, was performed for T4, T8 and T12 to assess reliability. Landmark points were placed on the images to define anatomical features consisting of the vertebral body and foramen, pedicles, transverse and
Statement of Purpose. The purpose of this experiment was to characterize the biomechanical properties of a minimally-invasive flexion-restricting stabilization system (FRSS) developed to address flexion instability. Background. Lumbar flexion instability is associated with degenerative pathology such as degenerative spondylolisthesis (DS) as well as resection of posterior structures during neural decompression. Flexion instability may be measured by increased total flexion/extension range of motion (ROM), as well as reduced stiffness within the high flexibility zone (HFZ, the range in which most activities occur). Flexion and segmental translation are known to be coupled; therefore increased flexion may exacerbate translational instability, particularly in DS. Method. Five cadaveric lumbar spines were tested intact; after L4-L5 destabilization including nucleotomy and midline decompression; and following restabilization with the FRSS secured to the
This study aimed to evaluate rasterstereography of the spine as a diagnostic test for adolescent idiopathic soliosis (AIS), and to compare its results with those obtained using a scoliometer. Adolescents suspected of AIS and scheduled for radiographs were included. Rasterstereographic scoliosis angle (SA), maximal vertebral surface rotation (ROT), and angle of trunk rotation (ATR) with a scoliometer were evaluated. The area under the curve (AUC) from receiver operating characteristic (ROC) plots were used to describe the discriminative ability of the SA, ROT, and ATR for scoliosis, defined as a Cobb angle > 10°. Test characteristics (sensitivity and specificity) were reported for the best threshold identified using the Youden method. AUC of SA, ATR, and ROT were compared using the bootstrap test for two correlated ROC curves method.Aims
Methods
The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.Aims
Methods