Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for tissue engineering and regenerative medicine applications. Thus, the aim of this study is to assess the role of EVs derived from platelets in
Introduction. Osteoarthritis (OA) is a progressively debilitating disease that
affects mostly cartilage, with associated changes in the bone. The
increasing incidence of OA and an ageing population, coupled with
insufficient therapeutic choices, has led to focus on the potential
of
Introduction. PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems. Method. Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived
Objectives. Mesenchymal
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of
Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal
The extracellular matrix (ECM)-based biomaterials provide a platform to mimic the disc microenvironment in facilitating
Adipose-derived
Phenotypic drift of
Cartilage lesions often undergo irreversible progression due to low self-repair capability of this tissue. Tissue engineered approaches based in extrusion bioprinting of constructs loaded with
The current treatment for osteoporosis such as bisphosphonates inhibits the catabolic activity of osteoclasts and subsequent bone resorption, but does not increase bone formation. There is therefore interest in using anabolic factors such as
Introduction. Tendon is prone to degeneration through ageing and injury and current therapies are largely ineffective. The recent identification of a cell population within tendon with stem cell-like characteristics holds potential for regeneration of tendon. The local
Background. Osteoporosis and bone fractures lead to immobility, chronic pain and high patient care costs. Mesenchymal
Summary Statement. Umbilical cord derived
Macromolecular crowding (MMC) is a biophysical phenomenon that accelerates thermodynamic activities and biological processes by several orders of magnitude. Herein, we ventured to identify the optimal crowder and to assess the influence of MMC in umbilical cord mesenchymal
There is increasing interest in using anabolic factors such as
Objectives. To explore the therapeutic potential of combining bone marrow-derived mesenchymal
Mesenchymal
Deriving autologous mesenchymal
Background. The gradient structure of osteochondral tissue, with bone, calcified and cartilage regions, challenges the design of biomaterials for defect repair. A novel biomimetic tri-layered collagen-based scaffold, designed to replicate these 3 anatomical layers, has been developed within our group and has shown success as an off-the-shelf product in treatment of focal defects in several animal models by recruiting host cells and directing them to form bone and cartilage in the requisite layers. This study aimed to elucidate the mechanism by which the extracellular matrix macromolecules in the scaffold directed