As many as 25% to 40% of unicompartmental knee
replacement (UKR) revisions are performed for pain, a possible cause
of which is proximal tibial
Abstract. Introduction. All-tissue quadriceps tendon (QT) is becoming an increasingly popular alternative to hamstrings tendon (HT) and bone-tendon-bone (BTB) autograft for anterior cruciate ligament (ACL) reconstruction. The relatively short graft length however dictates that one, or both, ends rely on suture fixation. The strength of this construct is therefore extremely important. This study evaluates whether the use of a novel fixation technique can improve the tensile properties of the construct compared to a Krackow suture, and a looped tendon (suture free) gold standard. Methods. Eighteen porcine flexor tendons were tested, across three groups; suture-tape Krackow, looped tendon, and the novel ‘strain suture’. Biomechanical testing simulated the different stages of ACL graft preparation and loading (60N preload for 10 minutes, 10 cycles from 10N to 75N, and 1000 cycles from 100N to 400N). Elongation and load to failure were recorded, and stiffness calculated for each construct. Results. The mean elongation was significantly improved for the
Aim. It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the
Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament
Aims. The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Methods. Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95. th. percentile maximum principal elastic
Abstract. INTRODUCTION. To preserve knee function and reduce degenerative, meniscal tears should be repaired where possible. Meniscal wrapping with collagen matrices has shown promising clinical outcome (AAOS meniscal algorithm), however there is limited basic science to support this. AIM. to model the contact pressures on the human tibial plateau beneath a (1) a repaired radial meniscal tear and (2) a wrapped and repaired radial meniscal tear. METHODOLOGY. Complete anterolateral radial tears were formed across 4 lateral human menisci, before repairing with ‘rip-stop’ H sutures using 2mm Arthrex Meniscal Suture tape. This was then repeated with the addition of a ChondroGide collagen matrix wrapping. From this experimental setup a finite element (FE) analysis model was construted. FE models of the two techniques (i) suture alone and (ii) suture and collagen-matrix wrap, were then modelled; bone was linear elastic, articular cartilage was a hyperelastic Yeoh model, and a linear elastic and transversely isotropic material model for the meniscus. The contact areas of the articulating surfaces, meniscus kinematics, and stress distribution around the repair were compared between the two systems. RESULTS. Meniscal suture-tape repair had higher local stresses and
Aims. Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but the solid metal implants disrupt the natural distribution of stress and
Objectives. Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone
Aims. The management of periprosthetic joint infection (PJI) after total knee arthroplasty (TKA) is challenging. The correct antibiotic management remains elusive due to differences in epidemiology and resistance between countries, and reports in the literature. Before the efficacy of surgical treatment is investigated, it is crucial to analyze the bacterial
Objectives. Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Materials and Methods. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis. Results. In all bone models, posterior translation on the lateral side and external rotation in the KA TKA models were greater than in the MA TKA models. The tibiofemoral force at the medial side was increased in the moderate and severe varus models with KA TKA. In the severe varus model with KA TKA, the contact stress on the tibial insert and the stress to the resection surface and to the medial tibial cortex were increased by 41.5%, 32.2% and 53.7%, respectively, compared with MA TKA, and the bone
Laboratory experiments and computational models were used to predict bone-implant micromotion and bone
As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.Aims
Methods
The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.Aims
Methods
The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair. We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders.Aims
Methods
A fracture of the medial tibial plateau is a serious complication of Oxford mobile-bearing unicompartmental knee arthroplasty (OUKA). The risk of these fractures is reportedly lower when using components with a longer keel-cortex distance (KCDs). The aim of this study was to examine how slight varus placement of the tibial component might affect the KCDs, and the rate of tibial plateau fracture, in a clinical setting. This retrospective study included 255 patients who underwent 305 OUKAs with cementless tibial components. There were 52 males and 203 females. Their mean age was 73.1 years (47 to 91), and the mean follow-up was 1.9 years (1.0 to 2.0). In 217 knees in 187 patients in the conventional group, tibial cuts were made orthogonally to the tibial axis. The varus group included 88 knees in 68 patients, and tibial cuts were made slightly varus using a new osteotomy guide. Anterior and posterior KCDs and the origins of fracture lines were assessed using 3D CT scans one week postoperatively. The KCDs and rate of fracture were compared between the two groups.Aims
Methods
Introduction. Recent focus has queried whether of deoxyribonucleic acid (DNA) sequencing modalities of bacterial DNA found in periarticular fluid and tissues will improve in periprosthetic joint infection (PJI) diagnosis and organism identification diagnostic accuracy for periprosthetic joint infection The purpose of this study was to compare the diagnostic accuracy of next generation sequencing (NGS) to polymerase chain reaction (PCR) multiplex, and culture, the Musculoskeletal Infection Society (MSIS) criteria, and the recently proposed criteria by Parvizi et al. [1] in the diagnosis of periprosthetic knee infections. Methods. In this retrospective study, aspirate or tissue samples were collected in 70 revision and 58 primary knee arthroplasties for routine diagnostic workup for PJI and sent to the laboratory for NGS and PCR multiplex. Concordance along with statistical differences between diagnostic studies were calculated using Chi-squared test for categorical data. Results. When comparing to the MSIS criteria, concordance was 78.1% for NGS, 66.4% for PCR, and 85.9% for culture (p<0.001). There was no significant difference based on prior infection (p=0.825), or sample collection method (tissue swab or synovial fluid) (p=0.986). Fifteen samples were culture positive and NGS negative, of which 10 (66.7%) met both criteria for PJI. Thirteen patients were culture negative but NGS positive, of which 2 (15.4%) met both criteria. Concordance was 100% between the MSIS criteria and criteria proposed by Parvizi et al. [1]. Conclusion. In this initial cohort NGS was more accurate than 16s subunit PCR techniques, but less accurate than culture in the diagnosis of PJI determining the presence or absence of PJI. What is not clear is how NGS will perform against culture in terms of identifying the specific bacterial
The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI? A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship.Aims
Methods
Higher osteoblastic bone activity is expected in aseptic loosening and painful unicompartmental knee arthroplasty (UKA). However, insights into normal bone activity patterns after medial UKAs are lacking. The aim of this study was to identify the evolution in bone activity pattern in well-functioning medial mobile-bearing UKAs. In total, 34 patients (13 female, 21 male; mean age 62 years (41 to 79); BMI 29.7 kg/m2 (23.6 to 42.1)) with 38 medial Oxford partial UKAs (20 left, 18 right; 19 cementless, 14 cemented, and five hybrid) were prospectively followed with sequential 99mTc-hydroxymethane diphosphonate single photon emission CT (SPECT)/CT preoperatively, and at one and two years postoperatively. Changes in mean osteoblastic activity were investigated using a tracer localization scheme with volumes of interest (VOIs), reported by normalized mean tracer values. A SPECT/CT registration platform additionally explored cortical tracer evolution in zones of interest identified by previous experimental research.Aims
Methods
Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship.Aims
Methods
To compare rates of serious adverse events in patients undergoing revision knee arthroplasty with consideration of the indication for revision (urgent versus elective indications), and compare these with primary arthroplasty and re-revision arthroplasty. Patients undergoing primary knee arthroplasty were identified in the national Hospital Episode Statistics (HES) between 1 April 1997 to 31 March 2017. Subsequent revision and re-revision arthroplasty procedures in the same patients and same knee were identified. The primary outcome was 90-day mortality and a logistic regression model was used to investigate factors associated with 90-day mortality and secondary adverse outcomes, including infection (undergoing surgery), pulmonary embolism, myocardial infarction, and stroke. Urgent indications for revision arthroplasty were defined as infection or fracture, and all other indications (e.g. loosening, instability, wear) were included in the elective indications cohort.Aims
Methods