The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional ultrasound imaging may be an option to address the clinical need for a rapid and safe point of care imaging device. The purpose of this research project is to validate the use of mechanically translated 3D-US in CMC OA patients to assess the measurement capabilities of the device in a clinically diverse population in comparison to MRI. Four CMC1-OA patients were scanned using the 3D-US device, which was attached to a Canon Aplio i700 US machine with a 14L5 linear transducer with a 10MHz operating frequency and 58mm. Complimentary MR images were acquired using a 3.0 T MRI system and LT 3D coronal photon dense cube fat suppression sequence was used. The volume of the
Background. Osteoarthritis (OA) has been described as a non-inflammatory arthritis and yet the choice of drug treatment is NSAIDs. Aim. To test the hypothesis that cytokines and chemokines are associated with inflammation in OA. Methods.
Introduction and aim. TKR remains one of the most successful surgeries in orthopedics. Still a sizeable number of patients remain dissatisfied reaching to a level of 30%. Our aim was to examine the excised
Introduction. Osteoarthritis (OA) has historically been thought of as a degenerative joint disease, but inflammation and angiogenesis are increasingly being recognised as contributing to the pathogenesis, symptoms and progression of OA. b-dystroglycan (b-DG) is a pivotal element of the transmembrane adhesion molecule involved in cell-extracellular matrix adhesion and angiogenesis. Matrix metalloproteinases (MMPs) are the main enzymes responsible for cartilage extracellular matrix breakdown and are also implicated in both angiogenesis and b-DG degradation in a number of malignancies. We aimed to investigate the expression and localisation of b-DG and MMP-3, -9, and -13 within cartilage,
Introduction. Post-arthroscopic glenohumeral chondrolysis (PAGCL) is a rare, but significant, complication of arthroscopic shoulder surgery that may lead to arthroplasty. Exact causal factors and pathways associated with the development of PAGCL are unknown however a number of patient factors and surgical factors have been implicated. Suture is one of these potential causal factors and currently little is known about the body's immune response to commonly used orthopaedic sutures. The aim of this project is to examine the biological response to 3 commonly used orthopaedic sutures (Ethibond, Fibrewire, and Orthocord) in a murine airpouch model. It was hypothesised that different sutures would elicit a different histological response and that suture wear-debris would induce an increased inflammatory reaction compared to intact suture. Methods. Total of 50 male Wister rats (12 weeks old) were used in this study. 5 rats were used per time point per group. Rat air-pouch was created according to a protocol previously described by Sedgewick et al. (1983). Once the pouch was established, on day 6, an incision was made and one of the test materials (intact Ethibond, intact Orthocord, intact Fibrewire, Fibrewire wear-debris) administered. Following wound closure, 5 ml of sterile PBS was injected to suspend the implanted materials. Negative control animals were injected with PBS alone. Rats were sacrificed at 1 and 4 weeks following surgery. The entire pouch was harvested and processed for H&E histology. The images of histological stained sections were digitally photographed and evaluated for presence of
Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and mesenchymal stem/stromal cells (MSCs) e.g. microfracture. The result of repair is often considered suboptimal as the goal of treatment is a more accurate regeneration of the tissue, hyaline cartilage, which requires a more detailed understanding of relevant biological signalling pathways. In this study, we describe a modulator of regulatory pathways common to both chondrocytes and MSCs. The chondrocytes thought to be cartilage progenitors are reported to reside in the superficial zone of articular cartilage and are considered to have the same developmental origin as MSCs present in the
Introduction. Macrophages phagocytes implant wear debris and produce various cytokines to evoke inflammation and periprosthetic osteolysis of aseptic loosening. It had been reported that expression of Toll-like receptor (TLR) 2 and other TLRs increased in periprosthetic tissues of aseptic loosening. Pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs) have been known as ligands of TLRs and considered to be involved in the osteolytic reactions via TLRs. Another type of immune sensors, nucleotide-binding and oligomerization domain (NOD)-like receptors (NLR) with a pyrin domain 3 (NLRP3) can also recognize PAMPs and DAMPs as their lignds, which has been presumed to participate in the local host response of macrophage cascade via phagocytosis of implant wear particles. However, the contribution of NLRP3 in periprosthetic tissues of aseptic loosening and the correlation between TLR2 and NLRP3 are still unclear. Materials and methods. TLR1, TLR2, TLR6, NLRP3, TNF-α and IL-1β of macrophages in aseptic loose periprosthetic tissues were immnohistorically evaluated and compared to osteoarthritic
Osteoarthritis (OA) is the fastest growing global health problem, with a total joint replacement being the only effective treatment for patients with end stage OA. Many groups are examining the use of bone marrow or adipose derived mesenchymal stem cells (MSCs) to repair cartilage, or modulate inflammation to promote healing, however, little efficacy in promoting cartilage repair, or reducing patient symptoms over temporary treatments such as micro-fracture has been observed. There is a growing body of literature demonstrating that MSCs derived from the synovial lining of the joint are superior in terms of chondrogenic differentiation and while improvements in clinical outcome measures have been observed with synovial MSCs, results from clinical studies are still highly variable. Based on our results, we believe this variability in clinical studies with MSCs results in part from the isolation, expansion and re-injection of distinct MSCs subtypes in normal vs. OA tissues, each with differing regenerating potential. However, it remains unknown if this heterogeneity is natural (e.g. multiple MSC subtypes present) or if MSCs are influenced by factors in vivo (disease state/stage). Therefore, in this study, we undertook an ‘omics’ screening approach on MSCs from normal and OA knee synovial tissue. Specifically, we characterized their global proteome and genomic expression patterns to determine if multiple MSC from normal and OA joints are distinct at the protein/gene expression level and/if so, what proteins/genes are differentially expressed between MSCs derived from normal and OA synovial tissue.
Purpose. The hip region is the second most common site for tuberculosis following the spine in children. The aim is to describe the variable radiological patterns of presentation and their resemblance to pyogenic infection, tumours and other benign conditions of bone in children. Methods. The clinical and radiological records of 29 children aged 10 months–13 years with confirmed tuberculosis of the hip region seen between 1990 and 2011 were reviewed retrospectively. Clinical features were pain, limp and flexion, adduction contractures. Abscesses and sinuses were seen in 4 children. The ESR ranged between 7–110 mm/hr. Mantoux was positive in 20 children. All cases were histologically confirmed. Treatment involved biopsy, currettage of bone defects, limited synovectomy and adductor tenotomy. Patients were immobilised for 4 weeks on a spica cast or traction. Antituberculous treatment was administered for 9–12 months. Results. Radiologically 9 lesions were extra-articular and 20 involved the joint
We present seven patients with recurrent haemarthroses after total knee arthroplasty, caused by an inherent platelet function defect. These patients developed painful knee swelling, persistent bleeding and/or wound breakdown, a platelet factor 3 availability defect being identified in all cases. Surgical exploration, with joint debridement, lavage and synovectomy, was performed in four patients who did not improve with conservative therapy. Histopathological examination of
The need for a more durable, metal free, non-osteolytic particle generating material in Total Hip Replacement (THR) is urgently required to reduce revision surgeries. Current used materials; ceramic, metal and UHMWPE remain discrepant for long-term use. Polyimide (MP-1™) is a high performance biopolymer, originating from aerospace industry. MP-1™ is heat resistant, highly cross-linked and exhibits a self-lubrication property required for bearings and articulating joints. Being resistant to fatigue, creep and chemicals and serializable by autoclave or irradiation, MP-1™ is ideal for medical devices. Finalizing pre-clinical testing, two patients were implanted 13 years ago after informed consent. A PM (Post Mortem) retrieval at 6.5 years, showed no measureable wear, a bland
Patellofemoral complaints are the common and nagging problem after total knee arthroplasty. Crepitus occurs in 5% to over 20% of knee arthroplasty procedures depending on the type of implant chosen. It is caused by periarticular scar formation with microscopic and gross findings indicating inflammatory fibrous hyperplasia. Crepitus if often asymptomatic and not painful, but in some cases can cause pain. Patella “Clunk Syndrome” is less common and represents when the peripatella scarring is abundant and forms a nodule which impinges and “catches” on the implant's intercondylar notch. Patella Clunk was more common with early PS designs due to short trochlear grooves with sharp transition into the intercondylar notch. Clunks are very infrequent with modern PS implants. This syndrome has been reported in CR implants as well. Thorough debridement of the
Purpose. Anterior knee pain has been relieved by resection of the infrapatellar plica (IPP). The question is: How? The hypothesis is: the IPP acts as an intra-articular ligament, a mechanical link between the forces of knee motion, the fat pad (FP) and the distal femur, holding the FP captive through the arc of motion. Release of the IPP severs this link, allowing the highly innervated FP to move freely. This may allow any underlying pathologic process to heal. Method. Anatomic dissection: In 12 knees, the extensor apparatus was released from the femur and retracted distally allowing relationships to be examined. Cadaver studies: Lateral fluoroscopy was used as well as direct arthroscopic visualization to control implantation of tantalum beads or radiographic contrast material in the FP and IPP. The knee was taken through the arc of motion repeatedly. The femoral attachment of the IPP was then released and knee motion repeated. Traction on the extensor apparatus simulated active motion. In-Vivo Study: The IRB approved study of 12 volunteers undergoing planned knee arthroscopy under local anesthesia. Contrast was placed in the FP and IPP under lateral fluoroscopic control. Passive, then active motion then a quads-set manoeuvre was performed. The IPP was resected and knee motion again recorded. Results. Knees without IPP (4) demonstrated FPs that were lobular, with lateral bodies, and a central process. The fibrous synovial layer of the capsule bypassed the FP inserting on the superior aspect of the menisci. Knees with an IPP (8) showed a FP that was covered by fibrous
Introduction. Friction between head and cup is a primary factor for survival of total hip joint replacement (THR) and its gliding surfaces. In up to 40% of all revisions, the cup or inlay must be replaced as result of friction-induced wear [1]. Aim of the study was to measure the friction-induced temperature increase in vivo in THR and to identify possible individual parameters of influence. Methods. For the in vivo measurement, an instrumented implant with an Al. 2. O. 3. /XPE-pairing and an integrated temperature sensor was used [Fig. 1] [2]. Ten patients were provided with such an instrumented implant. Up to now, long time measurements were performed on six of these patients (Ø63y, Ø89kg). During these measurements, the subjects walked Ø60min on a treadmill with 4km/h. The investigation was performed Ø61 (43–70) months post operatively. Short time (Ø3min) in vivo load measurements during walking on treadmill were already available from the other four patients. These data were used to calculate the peak temperatures after 60mins of walking by using a model, based on the long time measurements. Results. The peak values of the friction-induced temperature increase were achieved in vivo after 30min (H7R) to 70min (H2R), with peak temperatures between 1.5°C (H6R) to 4.8°C (H7R) [Fig. 2]. These maximum values were similar to those already observed in other patients [3]. The in vivo measured peak values of the friction-induced temperature increase after long time walking on a treadmill with respect to the implant orientation are shown in Fig. 3 as points and the calculated peak values as circles. First analyses have shown that the individual implant orientations seem to have an influence [Fig. 3] on the friction-induced increase of the joint temperature during walking, but also the patient's age. Discussion. The gliding partners and joint lubrication directly influence friction in artificial hip joint replacements and thus the friction- induced temperature increase. Analyses of the in vivo acting joint friction during walking have shown that there is an increase in friction over the course of each gait cycle after contralateral toe off [4]. This can be explained by a decrease in the lubricating film thickness due to the pressing out of the synovia from the joint space. During load reduction of the joint in the swing phase, the fluids are transported back into the joint space. Thus, the level of joint friction at the beginning of the next gait cycle depends on the return transport of the synovia. The influence of the sum anteversion angle (ΣAV) on friction-induced temperature increase (Fig. 3) can therefore be explained mechanically: The ΣAV determines the functional joint roofing and the position of the load-transferring zone into the joint socket. The larger the ΣAV, the more it shifts towards the edge of the socket, and the shorter the path for the return transport of the
Total Knee Arthroplasty (TKA) necessitates disruption of well-vascularised tissue during exposure and soft tissue release as well as from the cutting of bone, and thus bleeding into the joint space routinely occurs to some degree following TKA. Defining a complication from bleeding is not necessarily straightforward, but includes 3 different conditions: hemarthrosis, hematoma, and bloody wound drainage. All of these conditions can be seen in the normal postoperative setting, and when mild, may be simply observed. However, persistent swelling resulting in clinical symptoms should be appropriately treated. A hemarthrosis is defined as blood being contained in the knee capsule. Although some bleeding is expected, “excessive” hemarthrosis results in increased pain limiting or difficulty regaining motion. If high levels of fluid pressure are present, rupture of the arthrotomy may occur. A hematoma occurs when intra-articular blood escapes the arthrotomy and drains into the overlying soft tissues. This may occur following performance of a large lateral release or an insufficient arthrotomy closure or simply secondary to a large hemarthrosis under tension. Symptoms include ecchymosis, soft tissue swelling, and potential skin complications. Increased pain and limited range of motion frequently accompany these symptoms. Wound drainage may present as a knee that continues to have bloody or serous drainage that continues long after the first or second dressing change. It is this continued wound drainage that is most worrisome, with increased wound infection rates when prolonged drainage is allowed to persist. While excessive bleeding during the early postoperative period is most common, isolated or recurrent hemarthrosis may occur long after recovery from surgery. The incidence of postoperative hemarthrosis is not well studied, but the need for surgical treatment is uncommon. Recurrent hemarthrosis is also relatively rare after TKA and has been reported at rates between 0.3% and 1.6%. The etiology of this complication can be systemic or local, and initial workup should include coagulation studies to rule out any underlying systemic coagulopathy. Conservative therapy including rest, cooling, and elevation is the preferred treatment for mild cases. If conservative treatment is not successful, or the acute hemarthrosis is clinically tense, interfering with recovery, or threatening wound healing, drainage may be the preferable option. This can be done by opening the arthrotomy in the operating room or through large bore arthroscopy cannulae. Careful attention to debridement of clotted blood must be followed by a meticulous search for potential sources of bleeding which should be managed appropriately. Recurrent hemarthrosis may occur at any time but is not commonly diagnosed until the patient has left the early recovery period. Repeated bleeding episodes may lead to an inflammatory cascade that propagates bleeding events more readily. If coagulation studies are normal, the most common source is the impingement of proliferative
Injection before total knee arthroplasty(TKA) is the one of the postoprative risk factors after TKA and Infection after TKA can result in disastrous consequences. When the duration between injection and TKA is longer than 6 months, the risk is no longer elevated. Evaluation of synovial WBC number in frozen section slide is needed to check the presence of infection in revision total knee arthroplasty. Currently many patients have a history of multiple intraarticular injection before the primary TKA. Purpose of this study is to evaluate the synovial WBC findings in primary TKA and compare between injection group and no injection group. Materials and Methods. The synovial specimen(suprapatella pouch and posterior capsule) of 68 primary total knee arthroplasty were evaluated by the pathologist and reported the number of the WBC in frozen section /5 separate high power fields(HPF) (500x).. Injection group were 37 cases and non -injection group were 31 cases. Preoperative CRP and ESR were recorded and followe-up duration was more than 2 years. Joint fluid was sent to be cultured and analysed. Results. WBC count in frozen section shoed was average 4 WBCs/HPF (range < 0∼ 25) in both specimen and the suprapatella specimen was 3 WBCs/HPW (range 0∼25) and posterior capsule specimen was 1 WBCs/HPF(range 0∼14). The WBC count of injection group was 8 (range, 0∼25) and that of no injection group was 1.2 cells (range 0∼12) (p<0.05). The WBC counts in joint fluid was average 240 cells/ml (range. 1∼300) in non injection group and 643 cells/ml(range, 50∼1000) (p<0.05). The duration from the intraarticular injection to index surgery was 9 months(range, 6 weeks∼ 7 momths). The number of injection and duration bwtween injection and operationto has no significant correlation with the WBC counts. Eight percentage of specimen showed more than 10 WBCs in injection group and these patients have been not infected after more than 24 moths after TKA. Conclusion. The WBC count of the
Total Knee Arthroplasty (TKA) necessitates disruption of well vascularised tissue during exposure and soft tissue release as well as from the cutting of bone, and thus bleeding into the joint space routinely occurs to some degree following TKA. Defining a complication from bleeding is not necessarily straightforward, but includes 3 different conditions: hemarthrosis, hematoma, and bloody wound drainage. All of these conditions can be seen in the normal post-operative setting, and when mild may be simply observed. However, persistent swelling resulting in clinical symptoms should be appropriately treated. A hemarthrosis is defined as blood being contained in the knee capsule. Although some bleeding is expected, “excessive” hemarthrosis results in increased pain limiting or difficulty regaining motion. If high levels of fluid pressure are present, rupture of the arthrotomy may occur. A hematoma occurs when intra-articular blood escapes the arthrotomy and drains into the overlying soft tissues. This may occur following performance of a large lateral release or an insufficient arthrotomy closure or simply secondary to a large hemarthrosis under tension. Symptoms include ecchymosis, soft tissue swelling, and potential skin complications. Increased pain and limited range of motion frequently accompany these symptoms. Wound drainage may present as a knee that continues to have bloody or serous drainage that continues long after the first or second dressing change. It is this continued wound drainage that is most worrisome with increased wound infection rates when prolonged drainage is allowed to persist. The incidence of post-operative hemarthrosis as a clinical problem is not well studied, but the need for surgical treatment is uncommon. Recurrent hemarthrosis is also relatively rare after total knee arthroplasty and has been reported at rates between 0.3% and 1.6%. The etiology of this complication can be systemic or local, and initial work-up should include coagulation studies to rule out any underling systemic coagulopathy. Conservative therapy including rest, cooling, and elevation is the preferred treatment for mild cases. If conservative treatment is not successful, or the acute hemarthrosis is clinically tense, interfering with recovery, or threatening wound healing, drainage may be the preferable option. This can be done by opening the arthrotomy in the operating room or through a large bore arthroscopy cannulae. Careful attention to debridement of clotted blood must be followed by a meticulous search for potential sources of bleeding which should be managed appropriately. Recurrent hemarthrosis may occur at any time after surgery. Repeated bleeding episodes may lead to an inflammatory cascade that propagates bleeding events more readily. If coagulation studies are normal, the most common source is the impingement of proliferative
Objection. Multimodal local periarticular injection can be effective for pain management after total knee arthroplasty. We have investigated to get the similar results after total hip arthropasty. Methods. Sixty patients undergoing total hip arthroplasy were divided to two groups. One were with multimodal local periarticular injection(Group M) and the other were with single intraarticular injection Group C, conventional method. We injected a “cocktail” agents into the soft tissue (capsule,
Moderately to highly crosslinked UHMWPEs have functioned for at least a decade with dramatic reduction in wear volumes in THA. This wear reduction has been associated with a markedly reduced incidence of radiographic osteolysis. However, CT studies have demonstrated that osteolysis is not completely eliminated. There, however, are still questions which include: Is cost for further improvements warranted?; Is 10 years long enough to assure that no clinically relevant osteolysis occurs, especially in younger patients?; Do we have any data demonstrating improvement in revision scenarios?; With high levels of crosslinking (requiring more radiation) some fractures have been demonstrated at the region of the locking mechanism of the liner to shell. Will this prevalence increase? These materials are softer and can cause quicker crack propagation than conventional polyethylene.; Do better locking mechanisms need to be developed to prevent fracture problems that have been demonstrated in the present generation cementless designs?; Do we need more information as to the optimal counterface choice (cobalt chrome, ceramic, oxinium)?; Can hip results be extrapolated to the knee where fatigue failure is a major problem both on the bearing surface and with the locking mechanism?; Is the oxidation we are beginning to see on the surface of retrieved liners (thought to be related to lipids from the
Introduction. Wear debris generated by total hip replacements (THRs) may cause mechanical instability, inflammation, osteolysis and ultimately implant loosening, thus limiting the lifetime of such devices [1]. This has led to the development of biocompatible coatings for prostheses. Silicon nitride (SiN) coatings are highly wear resistant and any resultant wear debris are soluble, reducing the possibility of a chronic inflammatory reaction [2]. SiN wear debris produced from coatings have not been characterized in vivo. The aim of this research is to develop a sensitive method for isolating low volumes of SiN wear debris from periprosthetic tissue. Methods. Commercial silicon nitride particles of <50nm (Sigma Aldrich) were incubated with formalin fixed sheep