Our objective was to conduct a systematic review and meta-analysis, comparing differences in clinical outcomes between either autologous or
Introduction. Low back pain (LBP) is a worldwide leading cause of disability. This preclinical study evaluated the safety of a combined advanced therapy medicinal product developed during the European iPSpine project (#825925) consisting of mesendoderm progenitor cells (MEPC), derived from human induced pluripotent stem cells, in combination with a
Abstract. Objectives. Meniscus allograft and
Summary Statement. The tensile properties of a number of
The treatment of massive chronic tears is problematic. The re-tear rate following surgery for extensive cuff tears remains high, and there is little consensus regarding optimum treatment. To investigate the outcome of a cohort of patients who had open repair of an extensive cuff tear using the Leeds Kuff patch as an augment. A retrospective cohort study of consecutive patients with a massive cuff tear who had surgery in our regional elective orthopaedic centre over a two year period from January 2015 to Dec 2016. All patients followed identical rehabilitation protocols, supervised by physiotherapists with an interest in the shoulder. Outcomes assessment was undertaken at a minimum of 12 months by a registrar or physiotherapist who was not part of the treating team. Pre-op data collection included; range of motion, pain score, Oxford shoulder score (OSS), assessment of muscle atrophy on MRI. Data collection was completed in 15 patients. The mean age was 62 yrs (56 – 75). The mean pre-op OSS was 22, improving to a mean of 43. The range of motion and pain score improved. There were no intra-operative complications. One patient required a second surgery for evacuation of a haematoma at 10 days post op. One patient had an obvious re-tear at 4 months. Open rotator cuff repair with
Iterative finite element (FE) models are used to simulate bone remodelling that takes place due to the surgical insertion of an implant or to simulate fracture healing. In such simulations element material properties are calculated after each iteration of solving the model. New material properties are calculated based on the results derived by the model during the last iteration. Once the FE model has gone through a number of such iterations it is often necessary to assess the remodelling that has taken place. The method widely used to do this is to analyse element Young's modulus plots taken at particular sections through the model. Although this method gives relevant information which is often helpful when comparing different implants, the information is rather abstract and is difficult to compare with patient data which is commonly in the form of radiographs. The authors suggest a simple technique that can be used to generate
We developed a new porous scaffold made from a
To repair soft tissue, it is vital to ensure that the biomaterial is able to mimic the complex elasticity of the native tissue. It has been demonstrated that substrate stiffness has a huge influence on cellular growth, differentiation, motility and phenotype maintenance. The goal of the present study is to characterize extensively a set of polymeric films with variable mechanical profiles. A range of
Background, Context and Motivation. “Increases in reconstructive orthopaedic surgery, resulting from advances in surgical practice and the ageing population, have lead to a demand for bone graft that far exceeds supply.”…Traditional bone grafting methods have been linked with a number of negative issues including increased morbidity due to secondary operation site and action as a vector for spread of disease. (Hing 2004). A solution to these insufficiencies would be the creation of a
The retear of the rotator cuff (RC) repair is a significant problem. Usually it is the effect of poor quality of the tendon. The aim was to evaluate histologically two types of RC reconstruction with scaffold. We have chosen commercially available scaffold polycaprolactone based poly(urethane urea). Rat model of supraspinatus tendon injury was chosen. There were four study groups: RC tear (no repair) (n=10), RC repair (n=10), RC repair augmented with scaffold (n=10) and RC reconstruction with scaffold interposition between tendon and bone (n=10). The repairs were investigated histologically at 6 and 16 weeks. The results in two groups in which scaffold was used had significantly better scores at 6 weeks comparing to non-scaffold groups (16,4±3, 17,3± 2,8 vs. 12,5±4,4, 13,8±1,4 respectively) and 16 weeks (23±1,9, 22,8±1,6 vs. 13,8±3,3, 14,9± 3,8 respectively). Results in two scaffold groups improved between 6 and 16 weeks. Signs of foreign body reaction against scaffold were not observed. Application of scaffold to strengthen the repair site and bridging of the tendon defect improved healing of the RC repair in animal model at 6 and 16 weeks. The quality of reconstructed tendon improved over time. No such effect was observed in groups without repairs and isolated repairs were performed.
Sustained release of BMP-2 is reported to be able to reduce the required dose of BMP-2 for bone induction. Nanohydroxyapatite (nHAp) has an osteoinduction capability which is lack in conventional hydroxyapatite. In this study, we combined PLA-PEG with nHAp and investigated the bone regenerative capacity of the newly established composite material of rhBMP-2/PLA-PEG/nHAp in a rat model of spinal fusion. The PLA-PEG was liquidized in acetone and mixed with nHAp and rhBMP-2. The sheet-shaped BMP-2/PLA-PEG (5mg)/nHAp (12.5mg) composites were prepared while evaporating the acetone. The release kinetics of rhBMP-2 from the composite was investigated by ELISA.
We have studied damage to the tibial articular surface after replacement of the femoral surface in dogs. We inserted pairs of implants made of alumina, titanium and polyvinyl alcohol (PVA) hydrogel on titanium fibre mesh into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. We discuss the clinical implications of the possible use of this material in articular resurfacing and joint replacement.
Open fractures occur with an annual incidence of 11.5 per 100,000 (6900 pa in UK). Infection rates, even with intravenous broad-spectrum antibiotics, remain as high as 22%. For this reason necessary bone grafting is usually delayed until soft-tissue cover of the bone injury is achieved. A biodegradable bone graft that released sustained high concentrations of antibiotics and encouraged osteogenesis, that could be implanted safely on the day of injury would reduce infection rates and avoid reoperation and secondary grafting. The non –union rate (approx 350 pa in UK) should also be reduced. Such a graft, consisting of a PLA/PGA co –polymer and containing antibiotics, is under development and here we report assessment of spectrum and duration of antimicrobial activity and effect of addition of antibiotics on mechanical properties. Varying concentrations of gentamicin, colistin, clindamycin and trimethoprim, singly and in combination, were added to the copolymer and test pieces were made. These were then tested using an established method (SPTT) which determines degree and duration of antimicrobial activity as well as risk of emerging resistance. Test bacteria were Staphylococcus epidermidis, Staphylococcus aureus, MRSA and Escherichia coli. Mechanical properties (compressive strength and porosity) were determined using established methods.Introduction
Methods
Abstract. OBJECTIVES. Application of deep learning approaches to marker trajectories and ground reaction forces (mocap data), is often hampered by small datasets. Enlarging dataset size is possible using some simple numerical approaches, although these may not be suited to preserving the physiological relevance of mocap data. We propose augmenting mocap data using a deep learning architecture called “generative adversarial networks” (GANs). We demonstrate appropriate use of GANs can capture variations of walking patterns due to subject- and task-specific conditions (mass, leg length, age, gender and walking speed), which significantly affect walking kinematics and kinetics, resulting in augmented datasets amenable to deep learning analysis approaches. METHODS. A publicly available (. https://www.nature.com/articles/s41597-019-0124-4. ) gait dataset (733 trials, 21 women and 25 men, 37.2 ± 13.0 years, 1.74 ± 0.09 m, 72.0 ± 11.4 kg, walking speeds ranging from 0.18 m/s to 2.04 m/s) was used as the experimental dataset. The GAN comprised three neural networks: an encoder, a decoder, and a discriminator. The encoder compressed experimental data into a fixed-length vector, while the decoder transformed the encoder's output vector and a condition vector (containing information about the subject and trial) into mocap data. The discriminator distinguished between the encoded experimental data from randomly sampled vectors of the same size. By training these networks jointly using the experimental dataset, the generator (decoder) could generate
Biphasic calcium phosphate (BCP) with a characteristic needle-shaped submicron surface topography (MagnetOs) has attracted much attention due to its unique bone-forming ability which is essential for repairing critical-size bone defects such as those found in the posterolateral spine. Previous in vitro and ex-vivo data performed by van Dijk LA and Yuan H demonstrated that these specific surface characteristics drive a favorable response from the innate immune system. This study aimed to evaluate and compare the in vivo performance of three commercially-available
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into
Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of
In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for
Osteosarcoma is common in children and adolescents with high mortality due to rapid progression. Therapeutic approaches for osteosarcoma are limited and may cause side effects. Cannabinoid ligands exert antiproliferative, apoptotic effect in cancer cells via CB1/2 or TRPV1 receptors. In this study, we hypothesized that
Herein we address, hyaline cartilage regeneration issue by engineering a