Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia. During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65). The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic design to manifest its innovative features.
Introduction. Femoral periprosthetic fractures above TKA are commonly treated with retrograde intramedullary nailing (IMN). This study determined if
Objectives. The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. Methods. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs. Results. There was no evidence of cement attachment on any of the 11 Attune trays examined. There were significant differences between Ti and CoCr PFC Sigma implants and Attune designs (p < 0.05); however, there was no significant difference between CoCr PFC Sigma RP and Attune designs (p > 0.05). There were significant differences in the design features between the investigated designs (p < 0.05). Conclusion. The majority of the earliest PFC Sigma designs showed evidence of cement, while all of the retrieved Attune trays and the majority of the RP PFC trays in this study had no cement attached. This may be attributable to the design differences of these implants, in particular in relation to the cement pockets. Our results may help explain a controversial aspect related to cement attachment in a recently introduced
There are many factors which contribute to function after TKA. In this study we focus on the effect of varus-valgus (VV) balancing measured externally. A loose knee can show instability (Sharkey 2014) while too tight, flexion can be limited. Equal lateral-medial balancing at surgery leads to a better result (Unitt 2008; Gustke 2014), which is generally the surgical goal. Indeed similar varus and valgus laxity angles have been found in most studies in vitro (Markolf 2015; Boguszewski 2015) and in vivo (Schultz 2007; Clarke 2016; Heesterbeek 2008). The angular ranges have been 3–5 degrees at 10–15 Nm of knee moment, females having the higher angles. The goal of this study was to measure the varus and valgus laxity, as well as the functional outcome scores, of two cohorts; well-functioning total knees after at least one year follow-up, and subjects with healthy knees in a similar age group to the TKR's. Our hypothesis was that the results will be equal in the two groups. 50 normal subjects average age 66 (27 male, 23 female) and 50 TKA at 1 year follow-up minimum average age 68 years (16 male, 34 female) were recruited in this IRB study. The TKA's were performed by one surgeon (PAM) of one
Introduction. Better functional outcomes, lower pain and better stability have been reported with knee designs which restore physiological knee kinematics. Also the ability of the
Background. Wear simulation in total knee arthroplasty (TKA) is currently based on the most frequent activity – level walking. A decade ago multi-station knee wear simulators were introduced leading to optimisations of TKA designs, component surface finish and bearing materials. One major limitation is that current wear testing is mainly focused on abrasive-adhesive wear and in vitro testing does not reflect “delamination” as an essential clinical failure mode. The objective of our study was to use a highly demanding daily activities wear simulation to evaluate the delamination risk of polyethylene materials with and without vitamin E stabilisation. Methods. A cruciate retaining fixed bearing
Summary Statement. The constraint behavior of total knee arthroplasty (TKA) prosthesis usually has to be physically tested. This study presents a computer simulation model using finite element analysis (FEA) and demonstrates its effectiveness in predicting the femorotibial constraint behavior of TKA implants. Introduction. TKA prostheses are semi-constrained artificial joints. A well-functioning TKA prosthesis should be designed with a good balance between stability and mobility, meaning the femorotibial constraint of the artificial joint cannot be excessive or too lax. To assess the constraint behavior of a TKA prosthesis, physical testing is usually required, and an industrial test standard has been developed for this purpose. Benefiting from technological advancement, computer simulation has become increasingly useful in many industries, including medical device research and development. FEA has been extensively used in stress analysis and structural evaluation of various orthopaedic implants. This study presented an FEA-based simulation to evaluate the femorotibial constraint behavior of TKA prosthesis, and demonstrated the effectiveness of the method by validating it through physical testing. Methods. A Cruciate Retaining (CR)
Background. Surgical wound closure is not the surgeon”s favorite part of the total knee arthroplasty (TKA) surgery however it has vital rule in the success of surgery. Knee arthoplasty wounds are known to be more prone to infection, breakdown or delayed healing compared to hip arthroplasty wounds, and this might be explained by the increased tensile force applied on the wound with knee movement. This effect is magnified by the enhanced recovery protocols which aim to obtain high early range of movement. Most of the literature concluded that there is no difference between different closure methods. Objectives. We conducted an independent study comparing the complication rate associated with using barbed suture (Quill-Ethicon), Vicryl Rapide (polyglactins910-Ethicon) and skin staples for wound closure following
INTRODUCTION. Useful feedback from a Total Knee Replacement (TKR) can be obtained from post-surgery in-vivo assessments. Dynamic Fluoroscopy and 3D model registration using the method of Banks and Hodge (1996) [1] can be used to measure TKR kinematics to within 1° of rotation and 0.5mm of translation, determine tibio-femoral contact locations and centre of rotation. This procedure also provides an accurate way of quantifying natural knee kinematics and involves registering 3D implant or bone models to a series of 2D fluoroscopic images of a dynamic movement. AIM. The aim of this study was to implement a methodology employing the registration methods of Banks and Hodge (1996) [1] to assess the function of different
Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA. We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.Objectives
Methods