Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 6 - 6
1 Dec 2015
Kostopoulou F Papathanasiou I Anastasopoulou L Aidarinis C Mourmoura E Malizos K Tsezou A
Full Access

Toll-like receptors (TLRs) are crucial components of the immune system that recognize microbial infection and trigger anti-microbial host defense responses. Gram positive bacteria are causative factors of bone infections, as they alter the balance of coordinated activities during bone remodeling, stimulating osteoclastogenesis. The aim of the study was to investigate whether genetic variation in TLR2 and TLR4 genes predisposes to bone infections’ susceptibility. One hundred and twenty patients with bone infections (osteomyelitis) and 200 healthy controls were genotyped for two single nucleotide polymorphisms (SNPs), R753Q [A/G] in TLR2 gene and T399I [C/T] in TLR4 gene. DNA was extracted from whole blood and the above SNPs were typed with PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) method for genotype identification. All patients were infected by Gram-positive bacteria, predominantly Staphylococcus aureus. Statistical analysis was carried out using the chi-square test. We observed a significantly increased frequency in patients carrying the GA genotype of TLR2 R753Q polymorphism compared to controls (p<0.05). We also found that the A allele was more common in patients than in controls. All individuals carrying the A allele were heterozygous for this variant, while homozygous mutant individuals were not detected in the patients and the control group. In contrast, we found that the TLR4 T399I [C/T] SNP was similarly distributed among the two groups (patients and controls). The mechanism through which TLR2 mediates its effect in bone infections is under investigation. A significant difference was observed in the genotype frequency of TLR2 R753Q [A/G] polymorphism in patients, suggesting that genetic variability in TLR2 gene may be associated with susceptibility to osteomyelitis in response to bacterial invasion in the bone


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 13 - 13
1 Dec 2013
Bechtel C Gebhart J Tatro J Schluchter M Wilkinson JM Greenfield E
Full Access

Introduction:. Wear particles cause aseptic loosening by stimulating macrophages to produce inflammatory cytokines. Recent studies indicate that Toll-like receptor 2 (TLR2) and TLR4 mediate macrophage responses to the wear particles [1–3]. TLR2 and TLR4 uniquely activate MyD88-dependent signaling via an additional adapter protein known as TIRAP/Mal [4]. Del Vescovo et al reported that three single nucleotide polymorphisms (SNPs) within the TIRAP/Mal gene associate with aseptic loosening in THA patients [5]. The goal of the current study was therefore to determine whether TIRAP/Mal mediates responses to orthopaedic wear particles. Methods:. Immortalized wild type (WT) and TIRAP/Mal knockout (KO) murine macrophages (Mfs) were incubated in the presence or absence of titanium (Ti) particles (1 × 10. 8. particles/cm. 2. [2]. Three types of particles were used as described previously [1,2]: Ti particles with adherent bacterial debris (38.3 Endotoxin Units/10. 9. particles), endotoxin-free Ti particles (<0.1 EU/10. 9. particles), and Ti particles with adherent lipopolysacharide (LPS, 32.8 EU/10. 9. particles). TNFa, IL-1b, and IL-6 mRNAs were measured by real-time PCR and the secreted cytokines were measured by ELISA. Particle-induced osteolysis in calvaria of TIRAP/Mal KO and WT mice was measured 7 days after particle implantation [1,2]. In vitro results are presented as mean ± SEM of 3–4 replicate experiments analyzed by two-way ANOVA with Bonferroni post-hoc corrections. In vivo results are presented as means of individual parietal bones ± SEM (n = 22) and analyzed by one-way ANOVA on ranks with Student Neuman-Keuls post-hoc corrections. * denotes p < 0.5, ** denotes p < 0.01, *** denotes p < 0. Results:. Ti particles with adherent bacterial debris induced substantial osteolysis and expression of TNFa, IL-1b, and IL-6 at both the mRNA and protein levels and all of those responses were significantly inhibited by TIRAP/Mal KO (Fig 1 & Fig 2). Endotoxin-free Ti particles had a small effect on osteolysis and cytokine mRNA expression that was not dependent on TIRAP/Mal (Fig 1 & data not shown). Adherence of highly purified LPS to the endotoxin-free particles reconstituted the stimulation of osteolysis and cytokine expression as well as the dependence on TIRAP/MAL (Fig 1 & data not shown). Specificity of the effects of TIRAP/Mal KO was demonstrated since responses induced by recombinant murine IL-1b were unaffected (data not shown). Discussion:. Our results are the first demonstration that TIRAP/Mal mediates effects of orthopaedic wear particles. TIRAP/Mal KO inhibited expression of TNFa by ∼50% and almost completely inhibited particle-induced osteolysis, as well as expression of IL-1b and IL-6. Our results, coupled with the genetic association of SNPs in human TIRAP/Mal with aseptic loosening [5], lead to two conclusions. First, activation of TIRAP/Mal likely contributes to aseptic loosening in patients. Second, pathogen-associated molecular patterns (PAMPs) also likely contribute to aseptic loosening since the results with endotoxin-free Ti particles demonstrate that adherent PAMPs are required for activation of TIRAP/Mal


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 76 - 76
1 Dec 2016
Fillerova R Petrackova A Gajdos P Kudelka M Kriegova E Gallo J
Full Access

Aim. The diagnosis of periprosthetic joint infection (PJI) in total joint arthroplasty (TJA) remains a serious clinical challenge. Nowadays, limited biomarkers associated with PJI are available. We investigated therefore the utility of gene expression pattern of Toll-like receptors (TLR) and members of interleukin (IL)1/IL1R family, molecules critically involved in the innate immune response to invading pathogens, for detecting PJI in periprosthetic tissues around TJA. Method. Periprosthetic tissues were collected from 37 patients presenting with PJI and 39 patients having an aseptic failure of TJA. mRNA expression of known TLR receptors (TLR1–10) and 21 members of IL-1/IL-1R family was investigated using an innovative Smartchip Real-Time RT-PCR System. *. ; the data were normalized relative to the housekeeping gene GAPDH. Statistical tests were performed using GraphPad Prism. **. and bio-data mining methods. Results. In PJI, elevated mRNA expression levels of TLR1 (P=0.03), TLR4 (P=0.01) and TLR6 (P=0.01) were detected when compared to tissues from aseptic cases. On the contrary, lower mRNA expression of TLR3 (P=0.04) and TLR7 (P=0.047) were detected in PJI than in aseptic loosening. From IL1/IL-1R family, PJI was associated with elevated levels of IL1β (P=0.0004), IL1RN (P=0.05), IL1R1 (P=0.04), IL1R2 (P=0.01), and IL18RAP (P=0.02) comparing to aseptic failure. Multivariate analysis and sophisticated bio-data mining analysis are ongoing to determine the potential of TLRs and IL1/IL1R family as biomarkers of PJI in TJA. Conclusions. Tissue expression of TLRs and IL1/IL-1R family differ in terms of pattern and expression level between septic and aseptic failure of TJA. Our data support the potential of “innate gene” expression panel as candidate biomarker for assessment of PJI. Further studies are required to replicate our data and also to enable valid interpretation of our findings. Grant support: AZV MZ CR VES15-27726A, VES16-131852A, IGA LF UP_2016_011