Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Bone & Joint Research
Vol. 8, Issue 6 | Pages 232 - 245
1 Jun 2019
Lu C Zhang T Reisdorf RL Amadio PC An K Moran SL Gingery A Zhao C

Objectives. Re-rupture is common after primary flexor tendon repair. Characterization of the biological changes in the ruptured tendon stumps would be helpful, not only to understand the biological responses to the failed tendon repair, but also to investigate if the tendon stumps could be used as a recycling biomaterial for tendon regeneration in the secondary grafting surgery. Methods. A canine flexor tendon repair and failure model was used. Following six weeks of repair failure, the tendon stumps were analyzed and characterized as isolated tendon-derived stem cells (TDSCs). Results. Failed-repair stump tissue showed cellular accumulation of crumpled and disoriented collagen fibres. Compared with normal tendon, stump tissue had significantly higher gene expression of collagens I and III, matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and insulin-like growth factor (IGF). The stump TDSCs presented both mesenchymal stem and haematopoietic cell markers with significantly increased expression of CD34, CD44, and CD90 markers. Stump TDSCs exhibited similar migration but a lower proliferation rate, as well as similar osteogenic differentiation but a lower chondrogenic/adipogenic differentiation capability, compared with normal TDSCs. Stump TDSCs also showed increasing levels of SRY-box 2 (Sox2), octamer-binding transcription factor 4 (Oct4), tenomodulin (TNMD), and scleraxis (Scx) protein and gene expression. Conclusion. We found that a failed repair stump had increased cellularity that preserved both mesenchymal and haematopoietic stem cell characteristics, with higher collagen synthesis, MMP, and growth factor gene expression. This study provides evidence that tendon stump tissue has regenerative potential. Cite this article: C-C. Lu, T. Zhang, R. L. Reisdorf, P. C. Amadio, K-N. An, S. L. Moran, A. Gingery, C. Zhao. Biological analysis of flexor tendon repair-failure stump tissue: A potential recycling of tissue for tendon regeneration. Bone Joint Res 2019;8:232–245. DOI: 10.1302/2046-3758.86.BJR-2018-0239.R1


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 205 - 211
1 Feb 2020
Shao X Shi LL Bluman EM Wang S Xu X Chen X Wang J

Aims. To evaluate the donor site morbidity and tendon morphology after harvesting whole length, full-thickness peroneus longus tendon (PLT) proximal to the lateral malleolus for ligament reconstructions or tendon transfer. Methods. A total of 21 eligible patients (mean age 34.0 years (standard deviation (SD) 11.2); mean follow-up period 31.8 months (SD 7.7), and 12 healthy controls (mean age, 26.8 years (SD 5.9) were included. For patients, clinical evaluation of the donor ankle was performed preoperatively and postoperatively. Square hop test, ankle strength assessment, and MRI of distal calf were assessed bilaterally in the final follow-up. The morphological symmetry of peroneal tendons bilaterally was evaluated by MRI in healthy controls. Results. Among the patients, the mean pre- and postoperative American Orthopaedic Foot and Ankle Society (AOFAS) hindfoot score and Karlsson-Peterson score were 98.7 (SD 2.5; p = 0.480) and 98.5 (SD 2.4; p = 0.480), and 98.3 (SD 2.4; p = 0.162) and 97.9 (SD 2.5; p = 0.162), respectively. There was no significant difference between square hop test bilaterally (p = 0.109) and plantar flexion peak force bilaterally (p = 0.371). The harvested limb had significantly less eversion peak force compared to the contralateral limb (p < 0.001). Evidence of probable tendon regeneration was observed in all the patients by MRI and the total bilateral peroneal tendon index (mean ratio of harvested side cross-sectional area of peroneal tendon compared with the contralateral side) was 82.9% (SD 17.4). In 12 healthy controls, peroneal tendons (mean 99.4% (SD 4.3) were found to be morphologically symmetrical between the two sides. Conclusion. The current study showed satisfactory clinical foot and ankle outcomes after full-thickness PLT harvesting and indicated the regenerative potential of PLT after its removal. Level of Evidence: Level IV, therapeutic retrospective case series. Cite this article: Bone Joint J 2020;102-B(2):205–211


Bone & Joint Research
Vol. 5, Issue 6 | Pages 247 - 252
1 Jun 2016
Tabuchi K Soejima T Murakami H Noguchi K Shiba N Nagata K

Objectives. The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods. Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results. At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions. Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10.1302/2046-3758.56.2000585


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 141 - 141
11 Apr 2023
du Moulin W Bourne M Diamond L Konrath J Vertullo C Lloyd D Saxby D
Full Access

Anterior cruciate ligament reconstruction (ACLR) using a semitendinosus (ST) autograft, with or without gracilis (GR), results in donor muscle atrophy and varied tendon regeneration. The effects of harvesting these muscles on muscle moment arm and torque generating capacity have not been well described. This study aimed to determine between-limb differences (ACLR vs uninjured contralateral) in muscle moment arm and torque generating capacity across a full range of hip and knee motions. A secondary analysis of magnetic resonance imaging was undertaken from 8 individuals with unilateral history of ST-GR ACLR with complete ST tendon regeneration. All hamstring muscles and ST tendons were manually segmented. Muscle length (cm), peak cross-sectional area (CSA) (cm. 2. ), and volume (cm. 3. ) were measured in ACLR and uninjured contralateral limbs. OpenSim was used to simulate and evaluate the mechanical consequences of changes in normalised moment arm (m) and torque generating capacity (N.m) between ACLR and uninjured contralateral limbs. Compared to uninjured contralateral limbs, regenerated ST tendon re-insertion varied proximal (+) (mean = 0.66cm, maximum = 3.44cm, minimum = −2.17cm, range = 5.61cm) and posterior (+) (mean = 0.38cm maximum = 0.71cm, minimum = 0.02cm, range = 0.69cm) locations relative to native anatomical positions. Compared to uninjured contralateral limbs, change in ST tendon insertion point in ACLR limbs resulted in 2.5% loss in peak moment arm and a 3.4% loss in peak torque generating capacity. Accounting for changes to both max isometric force and ST moment arm, the ST had a 14.8% loss in peak torque generating capacity. There are significant deficits in ST muscle morphology and insertion points following ST-GR ACLR. The ST atrophy and insertion point migration following ACLR may affect force transmission and distribution within the hamstrings and contribute to persistent deficits in knee flexor and internal rotator strength


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 12 - 12
2 Jan 2024
Montes A Mauro A Cerveró-Varona A Prencipe G El Khatib M Tosi U Wouters G Stöckl J Russo V Barboni B
Full Access

Adipose-derived stem cells (ADSCs) are an effective alternative for Teno-regeneration. Despite their applications in tendon engineering, the mechanisms promoting tendon healing still need to be understood. Since there is scattered information on ovine ADSCs, this research aims to investigate in vitro their teno-differentiation for potential use in preclinical tendon regeneration models. Ovine ADSCs were isolated from the tail region according to FAT-STEM laboratories, expanded until passage six (P6), and characterized in terms of stemness, adhesion and MHC markers by Flow Cytometry (FCM) and immunocytochemistry (ICC). Cell proliferation and senescence were evaluated with MTT and Beta-galactosidase assays, respectively. P1 ADSCs’ teno-differentiation was assessed by culturing them with teno-inductive Conditioned Media (CM) or engineering them on tendon-mimetic PLGA scaffolds. ADSCs teno-differentiation was evaluated by morphological, molecular (qRT-PCR), and biochemical (WesternBlot) approaches. ADSCs exhibited mesenchymal phenotype, positive for stemness (SOX2, NANOG, OCT4), adhesion (CD29, CD44, CD90, CD166) and MHC-I markers, while negative for hematopoietic (CD31, CD45) and MHC-II markers, showing no difference between passages. ICC staining confirmed these results, where ADSCs showed nuclear positivity for SOX2 (≅ 56%) and NANOG (≅ 67%), with high proliferation capacity without senescence until P6. Interestingly, ADSCs cultured with the teno-inductive CM did not express tenomodulin (TNMD) protein or gene. Conversely, ADSCs seeded on scaffolds teno-differentiated, acquiring a spindle shape supported by TNMD protein expression at 48h (p<0.05 vs. ADSCs 48h) with a significant increase at 14 days of culture (p<0.05 vs. ADSCs + fleece 48h). Ovine ADSCs respond differently upon distinct teno-inductive strategies. While the molecules on the CM could not trigger a teno-differentiation in the cells, the scaffold's topological stimulus did, resulting in the best strategy to apply. More insights are requested to better understand ovine ADSCs’ tenogenic commitment before using them in vivo for tendon regeneration. Acknowledgements: This research is part of the P4FIT project ESR5, under the H2020MSCA-ITN-EJD-P4 FIT-Grant Agreement ID:955685


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 13 - 13
17 Apr 2023
Andreani L Vozzi G Petrini M Di Stefano R Trincavelli M Mani O Olivieri M Bizzocchi F Creati G Capanna R
Full Access

Traumatic acute or chronic tendon injuries are a wide clinical problem in modern society, resulting in important economic burden to the health system and poor quality of life in patients. Due to the low cellularity and vascularity of tendon tissue the repair process is slow and inefficient, resulting in mechanically, structurally, and functionally inferior tissue. Tissue engineering and regenerative medicine are promising alternatives to the natural healing process for tendon repair, especially in the reconstruction of large damaged tissues. The aim of TRITONE project is to develop a smart, bioactive implantable 3D printed scaffold, able to reproduce the structural and functional properties of human tendon, using FDA approved materials and starting from MSC and their precursor, MPC cell mixtures from human donors. Total cohort selected in the last 12 months was divided in group 1 (N=20) of subjects with tendon injury and group 2 (N=20) of healthy subject. Groups were profiled and age and gender matched. Inclusion criteria were age>18 years and presence of informed consent. Ongoing pregnancy, antihypertensive treatment, cardiovascular diseases, ongoing treatment with anti-aggregants, acetylsalicylic-acid or lithium and age<18 years were exclusion criteria. Firstly, we defined clinical, biological, nutritional life style and genetic profile of the cohort. The deficiency of certain nutrients and sex hormonal differences were correlated with tendon-injured patients. It was established the optimal amount of MPC/MSC human cell (collected from different patients during femoral neck osteotomy). Finally, most suitable biomaterials for tendon regeneration and polymer tendon-like structure were identified. Hyaluronic acid, chemical surface and soft-molecular imprinting (SOFT-MI) was used to functionalize the scaffold. These preliminary results are promising. It will be necessary to enroll many more patients to identify genetic status connected with the onset of tendinopathy. The functional and structural characterization of smart bioactive tendon in dynamic environment will represent the next project step


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 75 - 75
2 Jan 2024
Marr N Zamboulis D Beaumont R Tatarczyk Z Meeson R Thorpe C
Full Access

Tendon injuries occur frequently in athletes and the general population, with inferior healing leading to deposition of fibrotic scar tissue. New treatments are essential to limit fibrosis and enable tendon regeneration post-injury. In this study, we tested the hypothesis that rapamycin improves tendon repair and limits fibrosis by inhibiting the mTOR pathway. The left hindlimb of female adult Wistar rats was injured by needle puncture and animals were either given daily injections of rapamycin (2mg/kg) or vehicle. Animals were euthanized 1 week or 3 weeks post-injury (n=6/group). Left and right Achilles tendons were harvested, with the right limbs acting as controls. Tendon sections were stained with haematoxylin & eosin, and scored by 2 blinded scorers, assessing alterations in cellularity, cell morphology, vascularity, extracellular matrix (ECM) organization and peritendinous fibrosis. Immunohistochemistry was performed for the tendon pan-vascular marker CD146 and the autophagy marker LC3. Injury resulted in significantly altered ECM organization, cell morphology and cellularity in both rapamycin and vehicle-treated groups, but no alterations in vascularity compared to uninjured tendons. Rapamycin had a limited effect on tendon repair, with a significant reduction in peritendinous fibrosis 3 weeks after injury (p=0.028) but no change in cell morphology, cellularity or ECM organization compared to vehicle treated tendons at either 1 week or 3 weeks post injury. CD146 labelling was increased at the site of injury, but there was no apparent difference in CD146 or LC3 labelling in rapamycin and vehicle treated tendons. The decrease in peritendinous fibrosis post-injury observed in rapamycin treated tendons indicates rapamycin as a potential therapy for tendon adhesions. However, the lack of improvement of other morphological parameters in response to rapamycin treatment indicates that rapamycin is not an effective therapy for injuries to the tendon core. Acknowledgements: This study was funded by Versus Arthritis (22607)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 95 - 95
14 Nov 2024
Machain TC Kharchenko A Hostettler R Lippl J Mouthuy PA
Full Access

Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute adduction/abduction stimulation to chambers daily over a week. A metabolic activity assay served to assess cell viability at four time points. Statistical significance = p<0.05. Result. One day after beginning mechanical stimulation, chambers in the medium and high-force regimes displayed a rise in metabolic activity by 3% and 5%, respectively. By the last experimental day, all mechanical stimulation regimes had induced an augment in cell viability (15%, 57% and 39% with low, medium, and high loads, respectively) matched against the static controls. Compared to all other conditions, the medium-force regime prompted an increased relative change in metabolic activity for every time point set against day one (p<0.05). Conclusion. Human tenocytes’ viability reflected by metabolic activity in a physiologically relevant bioreactor system is enhanced by loading forces around 25N when mechanically stimulating using adduction/abduction motions. Knowing the most favourable load regime to stimulate tenocyte growth has informed the ongoing exploration of the distinctive effect of different motions on tendon regeneration towards engineering tissue grafts. This work was supported by the Engineering and Physical Sciences Research Council EP/S003509/1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 13 - 13
2 Jan 2024
Clerici M Ciardulli M Forsyth N Maffulli N Della Porta G
Full Access

Tendon injuries are a common problem that can significantly impact an individual's quality of life. While traditional surgical methods have been used to address this issue, Extracellular Vesicles (EVs) have emerged as a promising approach to promote tendon repair and regeneration mechanisms, as they deliver specific biological signals to neighbouring cells. In this study, we extracted human Tendon Progenitor Stem cells (hTPSCs) from surgery explants and isolated their EVs from perfused and static media. hTPSCs were isolated from tendon surgery biopsy (Review Board prot./SCCE n.151, 29/10/2020) and cultured in both static and dynamic conditions, using a perfusion bioreactor (1ml/min). When cells reached 80% confluence, they were switched into a serum-free medium for 24 hours for EVs-production. Conditioned media was ultra-centrifuged for 90min (100000g). The recovered pellet was then characterized by size and concentration (Nanosight NS300), Zeta potential (Mastersizer S), morphology (SEM and TEM) and protein quantification. hTPSCs stemness and multipotency were confirmed through CD73, CD90, and CD105 expression and confirmation of quad-lineage (adipo-osteo-chondro-teno) differentiation. After 7 days, hTPSCs were ready for EVs-production. Ultracentrifugation revealed the presence of particles with a concentration of 7×107 particles/mL consistent across both cultures. Further characterization indicated that EVs collected from perfused conditions displayed an elevated vesicle mean size (mean 143±6.5 nm) in comparison to static conditions (mean 112±7.4 nm). Consistent with, but not in proportion with, the above protein content was measured at 20 ng/ml (dynamic) and 7 ng/mL (static) indicating a nearly 3-fold increase in concentration associated with a ~22% increase in particle size. Proposed data showed that sub-200 diameter vesicles were successfully collected from multipotent hTPSCs starvation, and the vesicle size and protein concentration were compatible with established EV literature; furthermore, dynamic culture conditions seemed more suitable for EVs-production. Further characterization will be required to better understand, EVs-compositions and their role in tendon regenerative events


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 123 - 123
1 Nov 2018
Fernandez M Pandit A Biggs M
Full Access

Electromechanical coupling (piezoelectricity) is present in all living beings and provides basis for sense, thoughts and mechanisms of tissue regeneration. Herein, we ventured to assess the influence of MMC in mesenchymal stem cell culture. In this study, we fabricated piezoelectric regenerative scaffolds to assess the role of electromechamical stimulation on tendon regeneration. Tendon cells were selectively stimulated in vitro by mechanical or electromechanical cues using non-piezoelectric or piezoelectric scaffolds and optimal mechanical loading (4% deformation at 0.5 Hz). This was followed up with an in vivo study to assess tendon regeneration in a rat Achilles tendon injury model. P(VDF-TrFE), scaffolds were observed to mimic the fibrous structure of tendon tissue (figure 1) and were capable of producing electrical charges up to 17 pC/N when mechanically loaded (figure 1. Genes associated with tendon specific markers (Col.I/Col III, Scx and Mkx) and mechanosensitive ion channels such as PIEZO1, TRAAK and TRPV1 were significantly upregulated (figure 2). The upregulated genes were validated with individual real time Q-PCR and bioinformatics revealed a possible regulated function. Those results were further validated in vivo. Protein expression of repaired tendons showed a correlation between increase in expression of tendon related proteins SCX, TNMD, Decorin and expression of ion channels KCNK2, TRAAK and TRPV1. Collectively, these data clearly illustrate that scaffolds made of PVDF-TrFE can produce electrical charges when mechanically loaded. Moreover, gene and protein analyses showed a positive regulation of tendon specific markers through activation mechanosensitive voltage-gated genes. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 76 - 76
1 Apr 2018
Capella-Monsonis H Zeugolis DI
Full Access

The formation of postoperative adhesions poses a major complication in surgery, especially in the treatment of tendon, where adhesions can result in an alteration of the biomechanical and gliding properties, impeding a proper functioning of the tendon. Current treatments to prevent adhesions in the tendon are mainly based on the use of mechanical barriers which isolate the tendon and prevent fibrin deposition. Despite the positive results in preclinical models, these results have not been translated to clinics. Thus, in this study we propose a porcine peritoneum xenograft as an alternative antiadhesion barrier which integrates a basal membrane, since the presence of a basal membrane together with an epithelium or mesothelium layer prevents the formation of adhesions in vivo. First results have shown the suitability of the porcine peritoneum xenograft as an antiadhesion barrier due to its lower crosslinking ratio (p<0.05) and faster degradation by MMPs in vitro than a commercially available tendon product, which suggest a faster remodelling in vivo. On the other hand, the porcine peritoneum showed higher mechanical properties (p<0.01) and a lower coefficient of friction (p<0.01), characteristics that make the porcine peritoneum an appropriate material for tendon regeneration. Furthermore, the presence in the xenograft of a collagen type IV and laminin network after decellularisation was confirmed with immunohistochemistry, which poses the potential of the porcine peritoneum as antiadhesion device due to the presence of a basal membrane. Preliminary cell assessment experiments showed different morphology of adult dermal fibroblast (ADFs) on the different sides of the material (basal membrane and connective tissue) due to the differences in composition of both layers. Furthermore, the culture of ADFs during 7 days in media conditioned with the porcine peritoneum resulted in higher proliferation and metabolic activity (p<0.05) than those observed in the control and the media conditioned with the commercial product, suggesting the presence of growth factors in the porcine peritoneum which promote the growth of cells. Although positive results have been observed regarding the potential of porcine peritoneum as antiadhesion barrier for tendon regeneration, further studies which assess the influence of the basal membrane on cell behaviour and confirm the potential of the xenograft as antiadhesion barrier are being carried out


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 72 - 72
1 Apr 2018
Gonçalves AI Rotherham M Markides H Rodrigues MT Reis RL Gomes ME Haj AE
Full Access

Tendon injuries are a worldwide problem affecting several age groups and stem cell based therapies hold potential for tendon strategies guiding tendon regeneration. Tendons rely on mechano-sensing mechanisms that regulate homeostasis and influence regeneration. The mechanosensitive receptors available in cell membranes sense the external stimuli and initiate mechanotransduction processes. Activins are members of the TGF-β superfamily which participate in several tendon biological processes. It is envisioned that the activation of the activin receptor, trigger downstream Smad2/3 pathway thus regulating the transcription of tenogenic genes driving stem cell differentiation. In this work, we propose to target the Activin receptor type IIA (ActRIIA) in human adipose stem cells (hASCs), inducing hASCs commitment towards the tenogenic lineage. Since mechanotransduction can be remotely triggered through magnetic actuation combined with magnetic nanoparticles (MNPs), we stimulated hASCs tagged complexes using a vertical oscillating magnetic bioreactor (MICA Biosystems Ltd). Carboxyl functionalised MNPs (Micromod) were coated with anti-ActRIIA antibody (Abcam) by carbodiimide activation. hASCs were then cultured with MNPs-anti-ActRIIA for 14days with or without magnetic exposure (1Hz, 1h/every other day). hASCs cultured alone in αMEM (negative control) or in αMEM supplemented with ActivinA (R&D systems) (positive control of ActRIIA activation) were used as experimental controls. The tenogenic commitment of hASCs was assessed by real time RT-PCR, immunocytochemistry and quantification of collagen and non-collagenous proteins. Moreover, the phosphorylation of Smad2/3 was also evaluated on hASCs incubated for 2, 10, or 30min under magnetic stimulated (1Hz) and non-stimulated conditions. The increased gene expression of tendon related markers and higher ECM proteins deposition suggests that remote magnetic activation of ActRIIA promotes effectively hASCs tenogenic commitment. Furthermore, the detection of phospho-Smad2/3 proteins by ELISA (Cell Signaling Technology) was significantly more intense after 10min in hASCs under magnetic stimulation and in comparison to the control groups. These outcomes suggest that ActRIIA is a mechanosensitive receptor that can be remotely activated upon magnetic stimulation. In conclusion, remotely activation of MNPs tagged hASCs has potential for modulating tenogenic differentiation of stem cells envisioning successful cell therapies for tendon regeneration. Acknowledgements. FCT/MCTES PD/59/2013 (fellowship PD/BD/113802/2015), FCT post-doctoral grant SFRH/BPD/111729/2015, FCT grant IF/00685/2012, and EU-ITN MagneticFun


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 16 - 16
1 Oct 2015
Mueller A Clegg P
Full Access

Introduction. The rabbit common calcanean (Achilles) tendon is a compound apparatus frequently used in studies considering novel interventions to facilitate tendon regeneration. These studies often employ complete surgical transection of the apparatus. Due consideration of the translational relevance to human tendinopathy is often lacking and refinement of this injury model, consistent with the principles of the 3Rs, has not been forthcoming. Materials and Methods. Wild rabbit cadavers (n=10) were obtained from a licensed game dealer. For gross anatomy studies the caudal crus was dissected and transverse sections obtained every 5 mm. Ultrasongraphic examination of the entire apparatus was peformed with a 15 Hz transducer in transverse sections. Results. This study reannotates the apparatus and demonstrates that the principal structures, the superficial digital flexor tendon and medial and lateral gastrocnemius tendons, may be clearly identified by ultrasonographic examination. Discussion. Historical descriptions of the rabbit Achilles apparatus are shown to be inaccurate and follow human gross anatomical descriptions. Ultrasonographic identification of the constituent structures in the rabbit are poorly represented in the literature. Reference measurements and qualitative descriptions are provided that may facilitate the development of refined surgical techniques for in vivo studies of tendon regeneration in the rabbit beyond crude transection studies


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 65 - 65
1 Mar 2021
Sallent I Zeugolis D
Full Access

Adherent cells are known to respond to physical characteristics of their surrounding microenvironment, adapting their cytoskeleton and initiating signaling cascades specific to the type of cue encountered. Scaffolds mimicking native biophysical cues have proven to differentiate stem cells towards tissue-specific lineages and to maintain the phenotype of somatic cells for longer periods of time in culture. Biomaterial-based tendon implants are designed to withstand high physiological loads but often lack the appropriate biochemical, biophysical and biological structure to drive tendon regeneration by populating cells. The objective of this study is to use tendon main component, collagen type I, to create scaffolds that reproduce tendon natural anisotropy and rigidity, in an effort to engineer functional tendon tissue with native organization and strength, able to maintain tenocyte phenotype and to differentiate stem cells towards the tenogenic lineage. Porcine collagen type I in solution was treated with one of the following cross-linkers: glutaraldehyde, genipin or 4-arm polyethylene glycol (4SP). The resulting mixture was poured on micro-grooved (2×2×2 um) or planar PDMS moulds and air-dried to obtain 5 mg/ml collagen films. Surface topography and elastic modulus were analyzed using SEM/AFM and rheometry, respectively. Human tendon cells were cultured on the micro-grooved/planar scaffolds for up to 10 days. Cell morphology, collagen III and tenascin C expression were analyzed by immunocytochemistry. Among the different cross-linkers used, only the treatment with 4SP resulted in scaffolds with a recognizable micro-grooved surface topography. Precise control over the micro-grooved topography and the rigidity of the scaffolds was achieved by cross-linking the collagen with varying concentrations of 4SP (0, 0.5, 1 and 1.5mM) at low pH and temperature. The elastic modulus of the scaffolds cross-linked with 4SP (0.5mM) matched the values previously reported to induce tenogenic differentiation in stem cells (50–90 kPa). Approximately eighty percent of the human tendon cells cultured on the micro-grooved collagen films aligned in the direction of the anisotropy for 10 days in culture, mimicking the alignment of tenocytes in the native tissue. Cell nuclei morphology, known to play a central role in the process of mechanotransduction, was significantly more elongated for the tenocytes cultured on the micro-grooved scaffolds after 4 days in culture for all the 4SP concentrations. Synthesis, deposition and alignment of collagen III and tenascin C, two important tenogenic markers, were up regulated selectively on the micro-grooved and rigid scaffolds after 10 days in culture, respectively. These results highlight the synergistic effect of matrix rigidity and cell alignment on tenogenic cell lineage commitment. Collectively, this study provides new insights into how collagen can be modulated to create scaffolds with precise imprinted topographies and controlled rigidities


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 60 - 60
1 Jul 2014
James R Hogan M Balian G Chhabra A Laurencin C
Full Access

Summary Statement. A resorbable and biocompatible polymer-based scaffold was used for the proliferation and delivery of adipose derived stromal cells, as well as delivery of a cell growth/differentiation promoting factor for improved tendon defect regeneration. Introduction. Surgeons perform thousands of direct tendon repairs annually. Repaired tendons fail to return to normal function following injury, and thus require continued efforts to improve patient outcomes. The ability to produce regenerate tendon tissue with properties equal to pre-injured tendon could lead to improved treatment outcomes. The aim of this study was to investigate in vivo tendon regeneration using a biodegradable polymer for the delivery of adipose derived stromal cells (ADSCs) and a polypeptide, growth/differentiation factor-5/(GDF-5), in a tendon gap model. Patients & Methods. Female Fischer 344 rats underwent unilateral Achilles tenotomies. Defects were left un-repaired (Group 1-control), bridged using electrospun 65:35 polylactide-co-glycolide (PLAGA) tubular scaffolds (Group 2), PLAGA/ADSCs (Group 3), or PLAGA/GDF-5 (Group 4) scaffold composites. The plantaris was left intact. Operative limbs were immobilised for 10–14 days, followed by unrestricted activity. The rats were sacrificed at 4 weeks or 8 weeks after surgery, and tendons were assessed with histological, biochemical, and mechanical analyses. Results. PLAGA, PLAGA/ADSCs, and PLAGA/GDF-5 groups showed increased collagen I gene expression at both the 4 and 8 week time points (p<0.05). Tenomodulin (Tnmd) is the mature tendon phenotype marker unique to tendon tissue. Both the PLAGA/ADSCs and PLAGA/GDF-5 groups demonstrated increased tenomodulin expression at 4 and 8 weeks (p<0.05). Ultimate tensile load strength was improved in all PLAGA groups (2, 3, and 4) versus the control. Both composite groups (2 and 3) showed improved collagen deposition, as indicated by increased Collagen Area Fraction (CAF), approaching that of normal tendon at 8 weeks (p<0.05). Scaffold resorption was evident at 4 weeks, with complete replacement of the polymer with regenerate tissue and minimal gap formation at 8 weeks without evidence of an adverse inflammatory reaction. Defects bridged using the scaffold seeded with ADSCs showed improved collagen organization and increased modulus of elasticity compared with controls as well as properties approaching those of native tendon. Discussion/Conclusions. These results demonstrate that a tubular bioresorbable scaffold can promote extracellular matrix synthesis and organization, and the formation of neo-tendinous tissue; as well as serve as a carrier of adipose stromal cells and growth factors that are effective for tendon regeneration. Cells, growth factors and synthetic biomaterial polymers may be combined as a paradigm for regenerative engineering thereby serving as promising options for improved treatments of tendon injuries and potentially improving patient outcomes


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_11 | Pages 12 - 12
1 Oct 2015
Legerlotz K Jones E Riley G
Full Access

Introduction. The exact mechanisms leading to tendinopathies and tendon ruptures remain poorly understood while their occurrence is clearly associated with exercise. Overloading is thought to be a major factor contributing to the development of tendon pathologies. However, as animal studies have shown, heavy loading alone won't cause tendinopathies. It has been speculated, that malfunctioning adaptation or healing processes might be involved, triggering tendon tissue degeneration. By analysing the expression of the entirety of degrading enzymes (degradome) in pathological and non-pathological, strained and non-strained tendon tissue, the aim of this study was to identify common or opposite patterns in gene regulation. This approach may generate new targets for future studies. Materials and Methods. RNA was extracted from different tendon tissues: normal (n=7), tendinopathic (n=4) and ruptured (n=4) Achilles tendon; normal (n=4) and tendinopathic (n=4) posterior tibialis tendon; normal hamstrings tendon with or without subjection to static strain (n=4). The RNA was reverse transcribed, then pooled per group The expression of 538 protease genes was analysed using Taqman low-density array quantitative RT-PCR. To be considered relevant, changes had to be at least 4fold and measurable at a level below 36 Cts. Results. In general, there was little common regulation when exercised was compared with pathological tissue. The expression of PAMR1 and TNFαIP3 was upregulated with exercise (169-fold and 78-fold), Achilles tendinopathy (9724-fold and 7-fold) and Achilles tendon rupture (1809-fold and 10-fold), while DDI1, PSMB11 and PSH2 which were down-regulated with exercise were upregulated with Achilles pathology. Discussion. The newly found targets may deliver insights into the initiation and progression of tendon pathologies: PAMR1, a regeneration associated muscle protease which has been shown to be downregulated in Duchenne muscular dystrophy and upregulated in regenerating muscle fibers, might also be involved in tendon regeneration; TNFαIP3, which negatively regulates the NF-κB/pro-inflammatory pathway, could have anti-inflammatory function in tendon regeneration. PSMB11 and PSH2 are for the first time shown to be expressed in tendon and regulated in tendon pathology. Using this approach we were able to generate new targets and to add information on function, regulation and expression sites of recently identified proteins


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 1 - 1
1 Nov 2018
Docheva D
Full Access

Tendon and ligament tissues are fascinating in their simplistic appearance of tissue architecture coupled with outstanding biomechanical properties. In the last decade, the mechanisms governing their development, degenerative disease progression and step-wise repair process are becoming better understood. In this talk, I will present an overview of our basic research work on these following points. (i) Tendon generation: I will discuss our finding on the role of growth and biomechanical factors influencing tendon stem/progenitor cells; (ii) Tendon degeneration: I will provide evidences how disturbed cell-cell and cell-matrix contacts are involved in loss of tissue integrity; (iii) Tendon regeneration: I will present in vivo data on the application and performance of various cell populations in tendon repair


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 56 - 56
1 Jul 2020
Tsiapalis D De Pieri A Sallent I Galway N Zeugolis D Galway N Korntner S
Full Access

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. However, in vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Recent work suggests that maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the native tendon microenvironment. One approach used to modulate the in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). MMC is based on the addition of inert macromolecules to the culture media mimicking the dense extracellular matrix. In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking, we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance by enhancing synthesis and deposition of tissue-specific ECM. Human tendons were kindly provided from University Hospital Galway, after obtaining appropriate licenses, ethical approvals and patient consent. Afterwards, tenocytes were extracted using the migration method. Experiments were conducted at passage three. Optimization of MMC conditions was assessed using 50 to 500 μg/ml carrageenan (Sigma Aldrich, UK). For variable oxygen tension cultures, tenocytes were incubated in a Coy Lab (USA) hypoxia chamber. ECM synthesis and deposition were assessed using SDS-PAGE (BioRad, UK) and immunocytochemistry (ABCAM, UK) analysis. Protein analysis for Scleraxis (ABCAM, UK) was performed using western blot. Gene analysis was conducted using a gene array (Roche, Ireland). Cell morphology was assessed using bright-field microscopy. All experiments were performed at least in triplicate. MINITAB (version 16, Minitab, Inc.) was used for statistical analysis. Two-sample t-test for pairwise comparisons and ANOVA for multiple comparisons were conducted. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with the optimal MMC concentration at 2% oxygen tension showed increased synthesis and deposition of collagen type I, the major component of tendon ECM. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2% oxygen tension. In addition, protein analysis revealed elevated dexpression of the tendon-specific protein Sclearaxis, while a detailed gene analysis revealed upregulation of tendon-related genes and downregulation of trans-differentiation markers again when cells cultured with MMC at 2% oxygen tension. Finally, low oxygen tension and MMC did not affect the metabolic activity, proliferation and viability of human tenocytes. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance. Currently, the addition of substrate aligned topography together with MMC and hypoxia is being investigated in this multifactorial study for the development of an implantable device for tendon regeneration


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 59 - 59
1 Nov 2018
Gomes ME
Full Access

Significant challenges remain to accomplishing the development of fully functional tendon tissue substitutes that can lead to clinically effective and successful applications. Scaffolding materials must meet demanding requirements such i) mimic the hierarchical and anisotropically aligned structure of tendon tissues from the nano- up to the macroscale, ii) meet tendon mechanical requirements and non-linear biomechanical behaviour, iii) provide the necessary biophysical/biochemical cues and mechanical responsiveness to induce the tenogenic differentiation of stem cells and potentiating the effects of biochemical supplementation. On the other side, tenogenic differentiation of stem cells is still to be established, as well as the role of such cells (either naïve or pre-differentiated) in promoting tissue regeneration. We have recently found evidences that magnetic actuation can provide means of mechanically stimulating cells in a contact-free manner and, more interestingly, can also modulate inflammatory response, a critical issue for achieving tissue regeneration instead of repair. In summary, synergies of scaffold design and magnetic responsiveness can impact significantly cells behaviour as well as in vivo response and thus widen the therapeutically range of cell-laden tissue engineered constructs in tendon regeneration


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 45 - 45
1 Dec 2021
Lu V Tennyson M Zhang J Khan W
Full Access

Abstract. Objectives. Tendon and ligament injury poses an increasingly large burden to society. With surgical repair and grafting susceptible to high failure rates, tissue engineering provides novel avenues for treatment. This systematic review explores in vivo evidence whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon and ligament repair in animal models. Methods. On May 26th 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, using search terms ‘mesenchymal stem cell’ or ‘multipotent stem cell’ AND ‘extracellular vesicles’ or ‘exosomes’ AND ‘tendon’ or ‘ligament’ or ‘connective tissue’. Risk of bias was assessed using SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) tool. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, in silico studies were excluded, and studies without a control group were excluded. Data on isolation and characterisation of MSCs and EVs, and in vivo findings in animal models were extracted. Results. Out of 383 relevant studies, 11 case-control studies were included for data extraction, including a total of 448 animal subjects (range 10–90). Six studies utilised bone marrow-derived MSCs. All studies characterised their MSCs via flow cytometry, which expressed CD44 and CD90, and isolated EVs via ultracentrifugation (average diameter 125nm). Five studies utilised histological scoring systems, all of which reported a lower score with EV treatment, suggesting improved healing ability. Four studies reported increased anti-inflammatory cytokine expression (IL-10, TGF-β1); three studies reported decreased endogenous M1/M2 macrophage ratio with EV treatment. Eight studies reported increased maximum stiffness, breaking load, tensile strength in EV-treated tendons. Conclusion. MSC-EVs are effective therapeutic agents for tendon/ligament pathologies, attenuating the initial inflammatory response, and accelerating tendon matrix regeneration. Future randomised controlled trials are needed to definitely demonstrate MSC-EVs superiority in management of tendon/ligament injury