The Oxford unicompartmental knee replacement (UKR) was designed to minimise wear utilising a fully-congruent, mobile, polyethylene bearing. Wear of polyethylene is a significant cause of revision surgery in UKR in the first decade, and the incidence increases in the second decade. Our study used model-based radiostereometric analysis to measure the combined wear of the upper and lower bearing surfaces in 13 medial-compartment Oxford UKRs at a mean of 20.9 years (17.2 to 25.9) post-operatively. The mean linear penetration of the polyethylene bearing was 1.04 mm (0.307 to 2.15), with a mean annual wear rate of 0.045 mm/year (0.016 to 0.099). The annual wear rate of the phase-2 bearings (mean 0.022 mm/year) was significantly less (p = 0.01) than that of phase-1 bearings (mean 0.07 mm/year). The linear wear rate of the Oxford UKR remains very low into the
Purpose. The success of total knee replacement (TKR) surgery can be attributed to improvements in TKR design, instrumentation, and surgical technique. Over a decade ago oxidized zirconium (OxZr) femoral components were introduced as an alternative bearing surface to cobalt-chromium (CoCr), based on strong in-vitro evidence, to improve the longevity of TKR implants. Early reports have demonstrated the clinical success of this material however no long-term comparative studies have demonstrated the superiority of OxZr implants compared to a more traditional CoCr implant. This study aims to compare long-term survivorship and outcomes in OxZr and CoCr femoral components in a single total knee design. Methods. We reviewed our institutional database to identify all patients whom underwent a TKA with a posterior stabilized OxZr femoral component with a minimum of 10 years of follow-up. These were then matched to patients whom underwent a TKA with the identical design posterior stabilized CoCr femoral component during the same time period by gender, age and BMI. All patients had their patella resurfaced. All patients were prospectively evaluated preoperatively and postoperatively at 6 weeks, 3 months, 12 months, 2 years and every 1 to 2 years thereafter. Prospectively collected clinical outcome measures included, Western Ontario and McMaster Universities osteoarthritis index (WOMAC), Short-Form 12 (SF-12) and Knee Society clinical rating scores (KSCRS). Charts and radiographs were reviewed to determine the revision rates and survivorship (both all cause and aseptic) at 10 years allowing comparison between the two cohorts. Paired analysis was performed to determine if differences existed in patient reported outcomes. Results. There were 194 OxZr TKAs identified and matched to 194 CoCr TKAs. There was no difference in average age (OxZr, 54.2 years; CoCr, 54.4 years), Gender (OxZr, 61.9% female; CoCr, 61.9% female) and average body mass index (OxZr, 35.9 kg/m2; CoCr, 36.4 kg/m2) between the two cohorts. There were no significant differences preoperatively in any of the outcome scores between the two groups (WOMAC (p=0.361), SF-12 (p=0.771) and KSCRS (p=0.161)). Both the SF12 (p=0.787) and WOMAC (p=0.454) were similar between the two groups, however the OxZr TKA cohort had superior KSCRS compared to the CoCr TKA cohort at a minimum of 10 years (173.5 vs. 159.1, p=0.002). With revision for any reason as the end point, there was no significant difference in 10-year survivorship between the two groups (OxZr and CoCr, 96.4%, p=0.898). Similarly, aseptic revisions demonstrated comparable survivorship rates at 10-year between the OxZr (98.9%) and CoCr groups (97.9%) (p=0.404). Conclusion. In this matched cohort study, both groups demonstrated similar improvements in patient reported outcomes, although the OxZr cohort had greater KSCRS scores compared to the CoCr cohort. The reason for this difference is not clear but may represent selection bias, where OxZr implants were perhaps used in more active patients. Implant survivorship, based on revision rates for all causes and/or aseptic reasons, was excellent and similar for both the OxZr and CoCr femoral components at 10 years. Therefore, with respect to implant longevity at the end of the first decade, there appears to be no clear advantage of OxZr compared to CoCr for patients with similar demographics with this specific posterior stabilized TKA design. Further follow-up into the second and
The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.Objectives
Methods
There have been several reports of good survivorship and excellent function at ten years with fixed-bearing unicompartmental knee replacement. However, little is known about survival beyond ten years. From the Bristol database of over 4000 knee replacements, we identified 203 St Georg Sled unicompartmental knee replacements (174 patients) which had already survived ten years. The mean age of the patients at surgery was 67.1 years (35.7 to 85) with 67 (38.5%) being under 65 years at the time of surgery. They were reviewed at a mean of 14.8 years (10 to 29.4) from surgery to determine survivorship and function. There were 99 knees followed up for 15 years, 21 for 20 years and four for 25 years. The remainder failed, were withdrawn, or the patient had died. In 58 patients (69 knees) the implant was The mean Bristol knee score of the surviving knees fell from 86 (34 to 100) to 79 (42 to 100) during the second decade. Survivorship to 20 years was 85.9% (95% CI 82.9% to 88.9%) and at 25 years was 80% (95% CI 70.2% to 89.8%). Satisfactory survival of a fixed-bearing unicompartmental knee replacement can be achieved into the second decade and beyond.