Advertisement for orthosearch.org.uk
Results 1 - 20 of 35
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 132 - 132
1 Jul 2020
Camp M Howard AW Westacott D Kennedy J
Full Access

Distal femoral physeal fractures can cause of growth distrurbance which frequently requires further surgical intervention. The aim of this study was to determine if tibial tuberosity ossification at the time of injury can predict further surgery in patients who have sustained a physeal fracture of the distal femur. We retrospectively investigated all patients who had operative treatment for a distal femoral physeal fracture at a paediatric level one trauma center over a 17 year period. Logistic regression analysis was performed investigating associations between the need for further surgery to treat growth disturbance and tibial tuberosity ossification, age, Salter Harris grade, mode of fixation or mechanism of injury. 74 patients met the inclusion criteria. There were 57 boys (77%) and 17 girls (23%). The average age at time of injury was 13.1 years (range 2.-17.1 years). Following fixation, 30 patients (41%) underwent further surgery to treat growth disturbance. Absence of tibial tuberosity fusion to the metaphysis was significantly associated with need for further surgery (p = < 0 .001). Odds of requiring secondary surgery after tibial tuberosity fusion to metaphysis posteriorly (compared with not fused) were 0.12, 95% CI (0.04, 0.34). The estimate of effect of tibial tuberosity ossification on reoperation rates did not vary when adjusted for gender, mechanism, fixation and Salter Harris grade. When accounting for age, the odds of further operation if the tibial tuberosity is fused to the metaphysis posteriorly (compared with not fused) were 0.28, 95% CI (0.08, 0.94). Tibial tuberosity ossification stage at time of injury is a predictor of further surgery to treat growth disturbance in paediatric distal femoral fractures. Children with distal femoral physeal fractures whose tibial tuberosity was not fused to the metaphysis posteriorly were 8.3 times more likely to require further surgery


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 16 - 16
12 Dec 2024
Shah D Shah A
Full Access

Introduction & Aim. During TKR it is mandatory to achieve perfect soft tissue balance and component alignment. It is necessary to access all tight structures for proper releases. We aim to analyze the results of Trivector arthrotomy approach for TKRs. Methods. It is a retrospective study of 1050 cases between 2010-2020. All cases were performed by a single surgeon. Approach includes dividing distal 30% of vastus medialis along with medial retinaculum - 1cm medial to patella and patellar tendon distally up to Tibial tuberosity and raised as a single flap. Results. 656 cases Varus + FFD, 305 Varus, 60 Valgus, 24 hyperextension deformity & 5 neutral alignment cases were included. Results showed 87% patients at postop day-1 and 96% by day-4 regained ability to perform unassisted SLR. 4% had 5-to-10-degree quadriceps lag at discharge & recovered to neutral by 4 weeks. The surgical field was adequate in all cases. KSS score improved from Pre op of 56 (38-71) to a post op of 89 (84-95). All patients by day 10 were walking unaided or with a single cane in case of Bilateral TKRs. Medial parapatellar arthrotomy divides the quadriceps tendon. The alteration in various vectors of Quadriceps can change the balance and laterally mal-track the patella. Incidence of Lateral release is higher with this. Mid and subvastus approaches are non-extensile and have poor visibility during surgery increasing risk of malalignment. Trivector arthrotomy is extensile and retains 70% strength of vastus medialis. At closure, the quads mechanism is perfectly aligned, reducing the incidence of lateral mal-tracking and lateral release. Conclusion. The extensile nature of the approach and minimal disruption of the quadriceps mechanism encourages us to use this approach for all cases. It is a true “Gateway.”


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 98 - 98
23 Feb 2023
Woodfield T Shum J Tredinnick S Gadomski B Fernandez J McGilvray K Seim H Nelson B Puttlitz C Easley J Hooper G
Full Access

Introduction: The mechanobiology and response of bone formation to strain under physiological loading is well established, however investigation into exceedingly soft scaffolds relative to cancellous bone is limited. In this study we designed and 3D printed mechanically-optimised low-stiffness implants, targeting specific strain ranges inducing bone formation and assessed their biological performance in a pre-clinical in vivo load-bearing tibial tuberosity advancement (TTA) model. The TTA model provides an attractive pre-clinical framework to investigate implant osseointegration within an uneven loading environment due to the dominating patellar tendon force. A knee finite element model from ovine CT data was developed to determine physiological target strains from simulated TTA surgery. We 3D printed low-stiffness Ti wedge osteotomy implants with homogeneous stiffness of 0.8 GPa (Ti1), 0.6 GPa (Ti2) and a locally-optimised design with a 0.3 GPa cortex and soft 0.1 GPa core (Ti3), for implantation in a 12-week ovine tibial advancement osteotomy (9mm). We quantitatively assessed bone fusion, bone area, mineral apposition rate and bone formation rate. Optimised Ti3 implants exhibited evenly high strains throughout, despite uneven wedge osteotomy loading. We demonstrated that higher strains above 3.75%, led to greater bone formation. Histomorphometry showed uniform bone ingrowthin optimised Ti3 compared to homogeneous designs (Ti1 and Ti2), and greater bone-implant contact. The greatest bone formation scores were seen in Ti3, followed by Ti2 and Ti1. Results from our study indicate lower stiffness and higher strain ranges than normally achieved in Ti scaffolds stimulate early bone formation. By accounting for loading environments through rational design, implants can be optimised to improve uniform osseointegration. Design and 3D printing of exceedingly soft titanium orthopaedic implants enhance strain induced bone formation and have significant importance in future implant design for knee, hip arthroplasty and treatment of large load-bearing bone defects


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 44 - 44
1 Sep 2012
Kosashvili Y Lakstein D Studler U Ben-lulu O Safir O Gross AE Backstein D
Full Access

Purpose. The literature indicates that the tibial component in total knee arthroplasty (TKA) should be placed in internal rotation not exceeding 18 to the line connecting the geometrical center of the proximal tibia and the middle of the tibial tuberosity. These landmarks may not be easily identifiable intraoperatively. Moreover, an angle of 18 is difficult to measure with the naked eye. Method. The angle at the intersection of lines from the middle of the tibial tuberosity and from its medial border to the tibial geometric center was measured in 50 patients with normal tibia. The geometric center was determined on an axial CT slice at 10mm below the lateral tibial plateau and transposed to a slice at the level of the most prominent part of the tibial tuberosity. Similar measurements were performed in 25 patients after TKA in order to simulate the intra operative appearance of the tibia after making its proximal resection. Results. This angle was found similar (p=0.43) in normal and operated tibiae (mean 20.4, range 15–24 versus 20.7, range 16–25, respectively). In 89.3% of the patients the angle ranged from 17–24. No statistical difference (p=0.55) was found between women and men in both normal (mean 20.7, range 16–25 versus 19.9, range 15–24) and operated tibiae (mean 21.4, range 19–24 versus 20, range 16–25). Conclusion. In 90% of the patients the medial border of the tibial tuberosity is in internal rotation of 1724 to the line connecting its middle to the tibial geometric center. Since this anatomical landmark may be more easily identifiable intraoperatively than the commonly used medial 1/3, this data can and provide surgeons a quantitative reference point. Together with routine intra operative ancillary measurements the rotation of the tibial component can be more accurately determined


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 367 - 367
1 Dec 2013
Kawasaki M Nagamine R Kondo K Weijia C Osano K
Full Access

Introduction. Following total knee arthroplasty (TKA), some patients show patella baja. It is possible that patella baja after posterior stabilized (PS)-type TKA causes the patellar clunk syndrome and limitation of flexion. The purpose of this study was to examine patellar height before and after PS-type TKA and identify the factors related to the change in patellar height. Methods. Lateral X-ray films were taken at 90 degrees flexion before and after TKA using fluoroscopy in 87 patients (95 knees) (Fig. 1a, b). The components and surgical technique for TKA were Scorpio NRG (Stryker) and the modified gap control technique, respectively. The Insall-Salvati ratio (ISR) and the Labelle-Laurin method (LL) were measured as parameters of patellar height (Fig. 1c, d). Posterior condylar offset (PCO) (Fig. 1e), the distance from the anterior femoral line to the tibial tuberosity (TA), and the distance from the tibial tuberosity to the posterior condyle of the femur [TP; {TA-F (the length of the femoral condyle)}] (Fig. 1f) were examined as parameters that could be associated with the change in patellar height. All parameters were divided by patellar length to compensate for the expansion rate in each photograph. The mean LL/P, PCO/P, TA/P, and TP/P before TKA were set at 100%. Results. The mean ISR was not significantly different before and after TKA, but the mean LL before TKA was significantly decreased after TKA (−231%). The mean PCO/P of the femur were not significantly different after TKA. The mean length of TA/P and TP/P increased significantly after TKA (TA/P: 103%, TP/P: 110%). Sex, patellar replacement, lateral release of the patella and MCL release were not significantly related with the difference in LL after TKA. The difference in LL after TKA was significantly correlated with the distance from the tibial tuberosity to the posterior condyle of the femur (R. 2. = 0.44, Fig. 2). The difference in LL after TKA was not correlated with flexion motion after TKA. The patellar clunk syndrome after TKA was not seen in any of the cases. Discussion. The patellar height defined by the length from the anterior femoral line to the top of the patella was lower after PS-type TKA than before TKA, although the ISR did not change after TKA. The changing patellar height correlated with the difference in the distance from the tibial tubercle to the posterior condyle of the femur before and after TKA. Since the PCO was not significantly changed after TKA, it appears that the length of proximal tibia was prolonged. The prolonged proximal tibia and the distal positioning of the patella after TKA might be due to the reduced pre-operative instability of the knee and the inferior traction of the patellar tendon and quadriceps muscle. In conclusion, the patellar height after PS-type TKA decreased after surgery. The change in patellar height was due to the length of proximal tibia


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 170 - 170
1 Jan 2013
Elnikety S Pendegrass C Blunn G
Full Access

Introduction. Tendon injuries remain challenging, secondary healing and prolonged immobilisation result in suboptimal outcome. Previous study by our group showed that demineralised bone matrix (DBM) can result in faster healing of a tendon enthesis. The aim of this study is to test different ways augmenting tendon with DBM to enhance tendon repair and regeneration. Methods. DBM strips were prepared from tibias of mature ewes. Patella, patellar tendon and tibias were dissected and the distal 1 cm of the patellar tendon was excised. 4 models were designed;. Model-1, DBM strip was used to bridge the gap between the tendon and the tibial tuberosity. The DBM strip was stitched to the tendon using one bone anchor. Model-2, similar to model 1 with the use of 2 anchors. Model-3, similar to model 2, construct was off loaded by continuous thread looped twice through bony tunnels sited in the patella and in the tibial tuberosity. Model-4, similar to model 3 with 3 threads as off loading loop. All models were tested for pullout force and mode of failure. Results. The median failure force for model-1 (N=5) was 250N while for model-2 (N=5) was 290N. In model-3 and model-4 failure of the off loading loop was used as end point, 6 samples were tested in each model. Median failure force of model-3 was 767N and for model-4 was 934N. There was no statistical significance between model-1 and model-2 (p=0.249), however statistical significance was found between other models (p=< 0.006). Discussion. A study published in 1996 proved that cortical DBM can be used as ACL graft with evidence of ligamentisation. DBM provides a biologic scaffold with potential for use as ligament and tendon replacement. Our study shows that a tendon rupture can be augmented with DBM giving intial appropriate mechanical strength suitable for in-vivo use


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_II | Pages 123 - 123
1 Feb 2012
Choudhary R Kulkarni S Barrett D
Full Access

We performed an advancement and medial transfer of the tibial tuberosity based on Fulkerson's principle to treat intractable anterior knee pain associated with patellofemoral maltracking diagnosed by dynamic MRI. Between January 1998 and July 2000 twenty-two patients had 28 knees operated for anterior knee pain. There were 4 men and 18 women with a mean age of 28 years (range 18-41). Indications for surgery were [a] failure to improve after six months of physiotherapy and [b] patellofemoral maltracking evident in dynamic MRI. Mean follow-up was for 37 months (23 – 42). Knee instability score modified by Fulkerson was employed for objective and subjective assessment. Objectively 22 (79%) knees achieved good to excellent results. Four knees (14%) had fair, and two (7%) had poor results. Excellent and very good results were seen in 20 knees. These patients were a younger age group (mean age 21 years) and had minimal degeneration (grade I-II) of the patellofemoral joints. Two patients achieved good results. One of them had moderate (grade III) and one minimal (II) arthritis. Three knees with fair results had advanced (grade IV or V) and one had moderate (grade III) arthritis. Out of two patients who had a poor result, one had advanced degeneration (grade V) that later required a patellofemoral joint resurfacing. The other was a 24 year old woman with grade II changes. She was treated by the pain therapy team. Anterior displacement of the tuberosity in the presented study was kept to 5 mm to avoid the possible complications of wound break down. The overall length and depth of the osteotomy was also reduced to minimise risk of fracture and commence early mobilisation. Based on our results there is a strong case of justification for Anteromedialisation of tibial tuberosity using a smaller length of osteotomy and lesser degree of anteriorisation in carefully selected patients with Patellofemoral arthralgia associated with maltracking patella


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 98 - 98
1 Mar 2013
Kiyotomo D Sugamoto K Murase T Tomita T Kunugiza Y Kawashima K Futai K Kuramoto K Yamamoto K
Full Access

Introduction. Regarding TKA, patient specific cutting guides (PSCG), which have the same fitting surface with patient's bones or cartilages and uniquely specify the resection plane by fitting guides with bones, have been developed to assist easy, low cost and accurate surgery. They have already been used clinically in Europe and the USA. However little has been reported on clinical positioning accuracy of PSCG. Generally, the methods of making PSCG can be divided into 3 methods; construct 3D bone models with Magnetic Resonance (MR) images, construct 3D bone models with Computed Tomography (CT) images, and the last is to construct 3D bone models with both MR and CT images. In the present study, PSCG were made based on 3D bone models with CT images, examined the positioning accuracy with fresh-frozen cadavers. Materials and Methods. Two fresh-frozen cadavers with four knees were scanned by CT. Image processing software for 3D design (Mimics Ver. 14, Marialise Inc.) was used to construct 3D bone model by image thresholding. We designed femoral cutting guides and tibial cutting guides by CAD software (NX 5.0, Siemens PLM Software Co.). CT free navigation system (VectorVision Knee, BrainLab, Inc.) was used to measure positioning error. Average absolute value of positioning error for each PSCG was derived. Results. The average absolute value of positioning error in femoral PSCG was 1.5±0.8° for varus/valgus, 2.3±1.9° for extension/flexion, 1.2±1.8 mm for bone resection. The stability of femoral PSCG was satisfactory. The average absolute value of positioning error in tibial PSCG was 4.3±2.5° for varus/valgus, 5.2±3.3° for anterior slope/posterior slope, 2.6±1.1 mm for bone resection. The stability of tibial PSCG was not sufficient. Discussion. PSCG of the present study were made based on CT images, mainly designed to be fit with cortex, keeping away from cartilage or osteophytes. The fitting surfaces of distal femoral PSCG covered anterior femoral cortex. Also, the fitting surface of tibial PSCG fit to anterior medial cortex of horizontal tibial tuberosity. The average absolute value of positioning error by tibial PSCG varied widely. The main cause for this was their contacts with patellar tendon. Lateral sides of PSCG were contacted with patella tendon near the tibial tuberosity, they were pushed medially. Positioning accuracy of the femoral PSCG is thought to be enough for clinical application


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 54 - 54
1 May 2019
Rosenberg A
Full Access

General Principles. All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion. Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex mesh can provide additional support. Acute Patella Tendon Rupture. End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture. These can be repaired end-to-end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture. Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag, non-operative treatment in extension. A loose component and/or > 20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions. While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate. In chronic disruptions with loss of the patella, allograft extensor mechanism reconstruction may be considered. Marlex mesh repair has also been shown to be effective in reconstruction of chronic patellar and quadriceps tendon defects


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 98 - 98
1 Apr 2019
Saffarini M Valoroso M La Barbera G Toanen C Hannink G Nover L Dejour D
Full Access

Background. The goal of patellofemoral arthroplasty (PFA) is to replace damaged cartilage, and to correct underlying deformities, to reduce pain and prevent maltracking. We aimed to determine how PFA modifies patellar height, tilt, and tibial tuberosity to trochlear groove (TT-TG) distance. The hypothesis was that PFA would correct trochlear dysplasia or extensor mechanism malalignment. Methods. The authors prospectively studied a series of 16 patients (13 women and 3 men) aged 64.9 ± 16.3 years (range, 41 to 86) that received PFA. All knees were assessed pre-operatively and six months post-operatively using frontal, lateral, and ‘skyline’ x-rays, and CT scans to calculate patellar tilt, patellar height and tibial tuberosity–trochlear groove (TT-TG) distance. Results. The inter-observer agreement was excellent for all parameters. (ICC > 0.95). Pre-operatively, the median patellar tilt without quadriceps contraction (QC) was 17.5° (range, 5.3°–33.4°) and with QC was 19.8° (range, 0°–52.0°). The median Caton- Deschamps Index (CDI) was 0.91 (range, 0.80–1.22) and TT-TG distance was 14.5mm (range, 4.0–22.0). Post-operatively, the median patellar tilt without QC was 0.3° (range, −15.3°–9.5°) and with QC was 6.1° (range, −11.5°–13.3°). The median CDI was 1.11 (range, 0.81–1.20) and TT-TG distance was 10.1mm (range, 1.8–13.8mm). Conclusion. The present study demonstrates that, beyond replacing arthritic cartilage, trochlear-cutting PFA improves patellofemoral congruence by correcting trochlear dysplasia and standardizing radiological measurements as patellar tilt and TT-TG. The association of lateral patellar facetectomy diminishes local effects of OA and improves patellar tracking by reducing the patellar tilt


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 120 - 120
1 Apr 2019
McKenna R Jacobs H Walter W
Full Access

Background. Accurate implant positioning is of supreme importance in total knee replacement (TKR). The rotational profile of the femoral and tibial components can affect outcomes, and the aim is to achieve coronal conformity with parallelism between the medio-lateral axes of the femur and tibia. Aims. The aim of this study is to determine the accuracy of implant rotation in total knee replacement. Methods. Intra-operatively, the trans-epicondylar axis of the femur (TEA) and Whiteside's line were used as the reference points, aiming to externally rotate the femoral component by 1 degree. The medial third of the tibial tuberosity was used as the anatomical reference point, aiming to reproduce the rotation of the native tibia. Pre-and post-operative CT scans were reviewed. The difference in femoral rotation was calculated by determining the femoral posterior condylar axis (PCA) of the native femur pre-operatively and the implant post-operatively. Tibial rotational difference was calculated between the native tibial posterior condylar axis and tibial baseplate. Results. Pre and post-operative CT scans of 41 knees in 31 patients were analysed. All surgeries were carried out by a single surgeon using the same implant. The mean difference in rotation of the femur post-operatively was 1.2 degrees external rotation (ER), range −4.7 to 6.9 degrees ER. 83% of femoral components were within 3 degrees of the target rotation. Mean difference in tibial rotation was −3.8 degrees ER, range −11.1 to 12.4 ER. Only 39% of tibial components were within 3 degrees of the target rotation. A line perpendicular to the midpoint of the tibial PCA was actually medial to the tibial tubercle in 33 knees, and only corresponded to the medial 1/3 of the tibial tubercle in 8 of 41 knees. Conclusions. Femoral component rotation is seen to be more accurate than tibial in this group. It may be that the anatomical landmarks used intra-operatively to judge tibial rotation are more difficult to accurately identify. Posterior landmarks are difficult to locate in vivo. This study would suggest that using the anterior anatomical landmark of the medial 1/3 of the tibial tubercle does not allow accurate reproduction of tibial rotation in total knee replacement


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 116 - 116
1 Jun 2018
Jacobs J
Full Access

General Principles: All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion: Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture: End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture: These can be repaired end-to-end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture: Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag, non-operative treatment in extension. A loose component and/or > 20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions: While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate. In chronic disruptions with loss of the patella, allograft extensor mechanism reconstruction may be considered. Marlex mesh repair has also been shown to be effective in reconstruction of chronic patellar and quadriceps tendon defects


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 96 - 96
1 Dec 2016
Rosenberg A
Full Access

General Principles. All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion. Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6–8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture. End to end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length, if needed. Acute Quadriceps Tendon Rupture. These can be repaired end to end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture. Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag. A loose component and/or >20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions. While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. In most chronic disruptions allograft extensor mechanism reconstruction is preferable. If the patella remains viable and has not retracted proximally, an Achilles tendon graft is appropriate while in any patellar tendon defect, mesh repair has been shown to be effective


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_18 | Pages 23 - 23
1 Dec 2014
Mohanlal P Jain S
Full Access

A prospective study was done to assess the outcome of MPFL reconstruction for patellar instability using quadriceps graft. MPFL reconstruction was done using superficial strip of quadriceps by an anteromedial incision and attached close to medial epicondyle of femur. There were 15 knees in thirteen patients with a mean age of 23.4 years. All patients had MPFL reconstruction and 5 had tibial tuberosity transfers. With a mean follow-up of 39.4 (12–57) months, the mean pre-op Kujala scores improved from 47.8 to 87.2. The mean Lysholm scores improved from 54.2 to 86.8. None of the patients had patella re-dislocations. MPFL reconstruction with quadriceps graft appears to be effective producing good results in patients with patellar instability


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 109 - 109
1 Feb 2017
Kim J Han H Lee S Lee M
Full Access

Background. Rotational alignment is important for the long-term success and good functional outcome of total knee arthroplasty (TKA). While the surgical transepicondylar axis (sTEA) is the generally accepted landmark on the distal femur, a precise and easily identifiable anatomical landmark on the tibia has yet to be established. Our aim was to compare five axes on the proximal tibia in normal and osteoarthritic (OA) knees to determine the best landmark for determining rotational alignment during TKA. Methods. One hundred twenty patients with OA knees and 30 without knee OA were recruited for the study. Computed tomography (CT) images were obtained and converted through multiplanar reconstruction so the angles between the sTEA and the axes of the proximal tibia could be measured. Five AP axes were chosen: the line connecting the center of the posterior cruciate ligament(PCL) and the medial border of the patellar tendon at the cutting level of the tibia (PCL-PT), the line from the PCL to the medial border of the tibial tuberosity (PCL-TT1), the line from the PCL to the border of the medial third of the tibia (PCL-TT2), the line from the PCL to the apex of the tibia (PCL-TT3), and the AP axis of the tibial prosthesis along with the anterior cortex of the proximal tibia (anterior tibial curved cortex, ATCC). Results. In OA knees, the mean angles were less than those in normal knees for all 5 axes tested. In normal knees, the angle of the ATCC axis had the smallest mean value (1.6° ± 2.8°) and the narrowest range. In OA knees, the angle of the PCL-TT1 axis had the smallest mean value (0.3° ± 5.5°); however, the standard deviation (SD) and range were wider than that of the angle of the ATCC axis. The mean angle of the ATCC axis was larger (0.8° ± 2.7°) than the angle of the PCL-TT1 axis, but the difference was not statistically significant (P =0.461). The angle of the ATCC axis had the smallest SD and the narrowest range. Conclusion. In OA knees, the AP axis of the proximal tibia showed greater internal rotation compared with normal knees. In our study, the ATCC was found to be the most reliable and useful anatomical landmark for tibial rotational alignment in TKA


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_7 | Pages 11 - 11
1 May 2015
Punwar S Fick D Khan R
Full Access

We identified 26 tibial tubercle osteotomies (TTOs) performed in 23 revision knee arthroplasties between 2009 and 2013. Average age at last operation was 66 (33–92). Mean follow-up period was 14 months (3–33). Eleven TTOs were performed in 10 knees for single stage revisions and 15 TTOs were performed in 13 knees for 2 stage revisions in the setting of deep infection. In this infected subset 11 patients had a TTO performed at the first stage. This osteotomy was left unfixed to avoid leaving metalwork in a potentially contaminated wound, reopened, and then definitively secured with screws at the second stage. Our technique involves fashioning a long 7×1cm tibial tuberosity osteotomy without a proximal step-cut. All osteotomies united with no fractures. Minor proximal migration was noted in one case associated with screw loosening. There was no proximal migration noted in the 2 stage cases where the osteotomy had been left initially unfixed. There were no extensor lags. We conclude that TTO is a safe and reproducible procedure when adequate exposure cannot be obtained in revision knee arthroplasty. In 2 stage revisions sequential osteotomies does not decrease union rates and leaving the osteotomy unfixed after the first stage does not cause any issues


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2015
Ahmad R Calciu M Jayasekera N Schranz P Mandalia V
Full Access

Patients with recurrent patella instability, who have an abnormal patellofemoral alignment (patella height or tibial tubercle-trochlear groove (TTTG) distance), benefit from tibial tubercle transfer along with medial patellofemoral ligament (MPFL) reconstruction. Between July 2008 and April 2013, 18 patients (21 knees) with recurrent patellar instability underwent combined MPFL reconstruction and tibial tubercle transfer. All patients had abnormal patellofemoral alignment in addition to MPFL insufficiency. 15 patients (16 knees) with a mean age of 24 years (16–41) had a mean follow up of 26 months (6–55). We assessed the outcome using KOOS, KUJALA, activity level and patient satisfaction scores. All patients had a stable patella. There was a significant improvement in outcome scores in 12 out of 15 patients. At final follow up KOOS score had improved from 68.25(44 to 93.9) to 77.05(48.8 to 96.4) and KUJALA score had improved from 63.3(41–88) to 78.06 (45 to 99). 9 patients showed excellent results and achieved at least a pre-injury level of activity. 4 of these had activity level better then preoperative level. 6 patients had a lower activity level than pre-injury (1 – ongoing physiotherapy, 1 – because of lack of confidence, and 4 – Life style modification). 14 patients were satisfied and happy to recommend this procedure. There were 3 postop complications, with 2 cases of stiffness and 1 case of non-union of the tibial tuberosity. Our prospective study has shown that restoration of tibial tubercle-trochlear groove index, Patella height and Medial Patellofemoral Ligament reconstruction yields good results in carefully selected patients


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 66 - 66
1 Nov 2015
Rosenberg A
Full Access

General Principles: All repairs should be repaired in full extension. Repairs should be immobilised in full extension for 6–12 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Marlex Mesh has been shown to be an excellent replacement as well as an augment for deficient soft tissue. Acute tibial tuberosity avulsion: Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6–8 weeks of immobilization. Augmentation with a semitendinosus graft or Marlex can provide additional support. Acute Patella Tendon Rupture: End-to-end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length if needed. Acute Quadriceps Tendon Rupture: These can be repaired end-to-end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turndown or mesh may be a useful adjunct. Patella Fracture: Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20 degree lag. A loose component and/or > 20 degree extensor lag requires ORIF +/− component revision. Chronic Disruptions: While standard repair techniques are possible, tissue retraction usually prevents a “tension-free” repair. In most chronic disruptions allograft extensor mechanism reconstruction is preferable. If the patella remains viable and has not retracted proximally an Achilles tendon graft is appropriate while in any patellar tendon defect, mesh repair has been shown to be effective


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 47 - 47
1 Mar 2017
Nakamura T Niki Y Nagai K Sassa T Heldreth M
Full Access

Introduction. Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1]. In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state. The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment. Methods. Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium). The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane. The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1). Results. Tibial plateau (TP) had 2.38±1.78 degrees of varus and 11.37±3.76 degrees of posterior inclination. In coronal view, the GP axis was in varus alignment to the normal axis of the TP by 3.29±1.45 degrees. The shape of the GP is found to be different for medial and lateral half. The posterior inclination of the medial half tends to follow the TP, while the lateral half is twisted anteriorly (Figure 2). The GP medial half was in 5.03±2.89 degrees valgus and 1.62±2.37 degrees anteriorly inclined relative to the TP. The GP lateral half was in 10.38±2.62 degrees varus and 18.11±3.79 degrees anteriorly inclined relative to the TP. Discussion. The results from 22 healthy knees suggested that the tibial growth plate is aligned to tibial plateau in varus orientations with relatively small deviations. Distinctive shape difference for medial and lateral half of the growth plate was also observed. Limitation of this study is a number of subjects available for the analysis. Future study should consider inclusion of arthritic knees with various levels of deformities. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 103 - 103
1 Feb 2015
Rosenberg A
Full Access

General Principles. Repairs should be immobilised in full extension for 6–8 weeks. Gradual resumption of motion in a hinged brace over an additional 6–8 weeks almost always yields flexion to at least 90 degrees. Acute tibial tuberosity avulsion - Open repair is best accomplished with a non-absorbable heavy Krackow suture, secured distally around a screw and washer followed by 6 to 8 weeks of immobilization. Augmentation with a semitendinosus graft can provide additional structural support. Acute Patella Tendon Rupture - End to end repair is standard, but re-rupture is not uncommon, so supplemental semitendinosus reconstruction is recommended. The tendon is harvested proximally, left attached distally and passed through a transverse hole in the inferior patella. The gracilis tendon can be harvested and sutured to semitendinosus for additional length if needed. Acute Quadriceps Tendon Rupture - These can be repaired end to end with a non-absorbable heavy Krackow suture. A superficial quadriceps fascial turn-down may be a useful adjunct. Patella Fracture - Treatment depends on the status of the patellar component and the loss of active extension. If the component remains well fixed and the patient has less than a 20-degree lag. A loose component and/or >20-degree extensor lag requires ORIF +/− component revision. Chronic Disruptions - While standard repair techniques are possible, tissue retraction usually prevent a “tension-free” repair. In most chronic disruptions complete allograft extensor mechanism reconstruction is preferable. If the patella itself has not retracted proximally and remains intact other allograft soft tissues are a viable alternative. All grafts should be repaired tightly with the knee in full extension