Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_4 | Pages 1 - 1
3 Mar 2023
Kinghorn AF Whatling G Bowd J Wilson C Holt C
Full Access

This study aimed to examine the effect of high tibial osteotomy (HTO) on the ankle and subtalar joints via analysis of static radiographic alignment. We hypothesised that surgical alteration of the alignment of the proximal tibia would result in compensatory distal changes. 35 patients recruited as part of the wider Biomechanics and Bioengineering Centre Versus Arthritis HTO study between 2011 and 2018 had pre- and postoperative full-length weightbearing radiographs taken of their lower limbs. In addition to standard alignment measures of the limb and knee (mechanical tibiofemoral angle, Mikulicz point, medial proximal tibial angle), additional measures were taken of the ankle/subtalar joints (lateral distal tibial angle, ground-talus angle, joint line convergence angle of the ankle) as well as a novel measure of stance width. Results were compared using a paired T-test and Pearson's correlation coefficient. Following HTO, there was a significant (5.4°) change in subtalar alignment. Ground-talus angle appeared related both to the level of malalignment preoperatively and the magnitude of the alignment change caused by the HTO surgery; suggesting subtalar positioning as a key adaptive mechanism. In addition to compensatory changes within the subtalar joints, the patients on average had a 31% wider stance following HTO. These two mechanisms do not appear to be correlated but the morphology of the tibial plafond may influence which compensatory mechanisms are employed by different subgroups of HTO patients. These findings are of vital importance in clinical practice both to anticipate potential changes to the ankle and subtalar joints following HTO but it could also open up wider indications for HTO in the treatment of ankle malalignment and osteoarthritis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_18 | Pages 10 - 10
1 Dec 2014
Ghosh K Robati S Shaheen A Solan M
Full Access

The MediShoe (Promedics Orthopaedics Ltd, Glasgow) is a specific post-operative foot orthosis used by post-operative foot and ankle patients designed to protect fixations, wounds and maximise comfort. The use of rigid-soled shoes has been said to alter joint loading within the knee and with the popular use of the MediShoe at our centre in post operative foot and ankle surgery patients, it is important to ascertain whether this is also true. An analysis of the knee gait kinetics in healthy subjects wearing the MediShoe was carried out. Ten healthy subjects were investigated in a gait lab both during normal gait (control) and then with one shoe orthosis worn. Force plates and an optoelectronic motion capture system with retroreflective markers were used and placed on the subjects using a standardised referencing system. Three knee gait kinetic parameters were measured:- knee adduction moment; angle of action of the ground reaction force with respect to the ground in the coronal plane as well as the tibiofemoral angle. These were calculated with the Qualisys software package (Gothenburg, Sweden). A two-tailed paired t-test (95% CI) showed no significant difference between the control group and the shoe orthosis-fitted group for the knee adduction moment (p = 0.238) and insignificant changes with respect to the tibiofemoral angle (p = 0.4952) and the acting angle of the ground reaction force (p = 0.059). The MediShoe doesn't significantly alter knee gait kinetics in healthy patients. Further work, however is recommended before justifying its routine use


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 79 - 79
1 Jan 2016
Cho S Youm Y Kim J
Full Access

Purpose. The NexGen® legacy posterior stabilized (LPS)-Flex total knee system (Zimmer, Warsaw, IN) is designed to provide 150° of flexion following total knee arthroplasty (TKA). But, recent reports found a high incidence of loosening of the femoral component related to the deep flexion provided. We evaluated 9- to 12-year clinical and radiological follow-up results after NexGen® LPS-Flex TKA. Materials and Methods. A retrospective evaluation was undertaken of 209 knees in 160 patients (21 males, 139 females) who were followed up for more than 9 years after Nexgen®LPS-Flex TKA. Evaluations included preoperative and postoperative range of motion(ROM), Knee Society(KS) knee score, function scores, tibiofemoral angle and assessment of postoperative complications. Results. The NexGen® LPS-Flex TKA resulted in a significant ROM increase from a mean flexion contracture of 9°(range 0°–20°) and further flexion of 117°(range 80° –155°) to a mean flexion contracture of 2°(range 0° –10°) and a further flexion of 131°(range 95° –155°). The KS knee and function scores significantly improved from 52 and 38 before surgery to 87 and 82 after surgery, respectively. The tibiofemoral angle significantly improved from varus 5.7° to valgus 5.4°. Progressive radiolucent lines around the femoral component on radiographs were observed in 39 knees(18.7%, 34 patients), and more of those knees, could squat than non-radiolucent knees(74.4% vs. 25.6%; P<0.05). Twelve knees(5.7%, 11 patients) were revised at a mean 53 months after the index operation due to loosening of the femoral component. Other causes of revision included 3 knees of infection(1.4%) and 3 knees of instability(1.4%). Conclusion. While NexGen® LPS-Flex TKA satisfactorily improved ROM, it was associated with a relatively high incidence of loosening of the femoral components. This might be associated with passive-maximal flexion activity, such as squatting or kneeling. The clinical relevance of this study is that squatting or kneeling, common activity in Asian, may not be allowed after NexGen® LPS-Flex TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 104 - 104
1 Jan 2016
Cho S Youm Y Kim J
Full Access

Purpose. The purpose of this study was to compare the clinical and radiological results after total knee arthroplasty(TKA) with PCL sacrificing (PCS) Medial Pivot Knee (MPK) and PCL Substituting (PS) Nexgen® LPS. Materials and Methods. One hundred twenty knees in 80 patients after TKA with PCS ADVANCE® MPK (Group I) and 116 knees in 85 patients with PS Nexgen® LPS (Group II) were retrospectively evaluated. All the patients were followed up for more than 6 years. The evaluations included preoperative and postoperative range of motion (ROM), tibiofemoral angle, Knee Society (KS) knee and function score, Hospital for Special Surgery (HSS) knee score, WOMAC score and postoperative complications. Results. For group I, the ROM increased from a mean flexion contracture of 7.6° and further flexion of 115.1° to 1.3° and 120.5° respectively and for group II, from 9.4° and 124.8° to 1.3° and 129.7°, respectively. For group I, KS knee and function scores increased from 46 and 38 to 87 and 82 respectively, and for group II, from 49 and 43 to 88 and 81, respectively. Hospital for Special Surgery (HSS) knee score improved from preoperatively 48.3 to postoperatively 84.2 for group I and 44.6 to 82.3 for group II. WOMAC score was improved preoperatively 54.8 to postoperatively 18.3 for group I and 57.4 to 17.4 for group II. For group I, tibiofemoral angle changed from varus 4.6° to valgus 5.8° and for group II, from varus 5.8° to valgus 5.2°. The complications were 2 cases(1.7%) of periprosthetic patellar fracture and 1 case(0.8%) of early failure of the tibial component and 1 case(0.8%) of osteolysis and loosening in group I, and 1 knee (1.0%) with early femoral component failure and 1 knee with arthrofibrosis (1.0%) in group II. Conclusion. The minimum 6-year follow-up results of PCS ADVANCE® MPK TKA without box cut were comparable to those of PS Nexgen®LPS


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 74 - 74
1 May 2016
Kang S Chang C Choi I Woo J Woo M Kim S
Full Access

Introduction. Deformity of knee joint causes deviation of mechanical axis in the coronal plane, and the mechanical axis deviation also could adversely affect biomechanics of the ankle joint as well as the knee joint. Particularly, most of the patients undergoing total knee arthroplasty (TKA) have significant preoperative varus malalignment which would be corrected after TKA, the patients also may have significant changes of ankle joint characteristics after the surgery. This study aimed 1) to examine the prevalence of coexisting ankle osteoarthritis (OA) in the patients undergoing TKA due to varus knee OA and to determine whether the patients with coexisting ankle OA have more varus malalignment, and 2) to evaluate the changes of radiographic parameters for ankle joint before and 4 years after TKA. Methods. We evaluated 153 knees in 86 patients with varus knee OA who underwent primary TKA. With use of standing whole-limb anteroposterior radiographs and ankle radiographs before and 4 years after TKRA, we assessed prevalence of coexisting ankle OA in the patients before TKA and analyzed the changes of four radiographic parameters before and after TKA including 1) the mechanical tibiofemoral angle (negative value = varus), 2) the ankle joint orientation relative to the ground (positive value = sloping down laterally), 3) ankle joint space, and 4) medial clear space. Results. Of the 153 knees, 59 (39%) had radiographic ankle OA. The knees with ankle OA had significantly more varus mechanical tibiofemoral angle preoperatively than those without ankle OA (− 11.9° vs. − 9.3° on average, respectively; P = 0.003). Compared to the preoperative condition, the ankle joint orientation relative to the ground significantly changed after TKA (from 9.0° to 4.8° on average, P<0.001) while ankle joint space and medial clear space did not. Conclusions. Our study revealed that coexisting ankle OA would be common in patients with varus knee OA, particularly in patients with more varus malalignment. TKA also significantly changes the ankle joint orientation relative to the ground which shows more parallel to the ground. However, its effect on ankle joint space and medial clear space seems to be minimal upto 4 years after TKA. Our findings warrant consideration in preoperative evaluations of ankle OA in varus knee OA patients undergoing TKA, and further studies should evaluate prospectively the clinical implications of radiographic change of the ankle joint after TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 91 - 91
1 Dec 2013
Plate JF Augart MA Bracey D Von Thaer S Allen J Sun D Poehling G Jinnah R
Full Access

Introduction. There has been renewed interest in the use of unicompartmental knee arthroplasty (UKA) for patients with limited degenerative disease of the knee due to improved surgical techniques and prosthetic design, and the desire for minimally invasive surgery. However, patient satisfaction following UKA for lateral compartment disease have been suboptimal with increased revision rates. Robotic-assisted UKA has been shown to improve precision and accuracy of component placement, which may improve outcomes of lateral UKA. The purpose of this study was to compare the outcome of robotic-assisted UKA to conventional UKA for degenerative disease of the lateral compartment with the hypothesis that robotic-assisted lateral UKA results in superior outcomes compared to conventional UKA. Methods. The institution's joint registry was searched for patients who underwent UKA for limited degenerative disease of the lateral knee compartment between 2004 and 2012 and a total of 125 lateral UKAs were identified. The medical records of all patients were reviewed and assessed for the type of surgical procedure used (robotic-assisted versus conventional), length of hospital stay, Oxford knee score, and occurrence of revision surgery. Preoperative and postoperative radiographs were assessed for tibiofemoral angle, femoral and tibial joint line angle, posterior tibial slope, and orientation of the femoral and tibial components. Results. A total of 88 (84 patients) robotic-assisted (Figure 1) and 37 (36 patients) conventional UKA (Figure 2) were analyzed and compared. Patient age and BMI were similar between patients with robotic-assisted (64.2 ± 11.5 years, 28.7 kg/m. 2. ) and conventional UKA (64.2 ± 11.5 years [p = 0.998], 30.5 kg/m. 2. [p = 0.107]). At a mean follow-up of 24.4 ± 1.1 months for robotic-assisted UKA and 64.0 ± 3.0 months (p < 0.05) for conventional UKA, the mean Oxford scores were significantly higher in patients with robotic-assisted UKA (39.4 ± 1.1 versus 34.4 ± 2.5, p = 0.048). The length of stay was significantly shorter after robotic-assisted UKA (1.7 days) compared to conventional UKA (2.3 days, p < 0.001). Correction of the tibiofemoral angle was significantly higher in patients with conventional UKA (8.7 to 176.9 degrees) compared to patients with robotic-assisted UKA (3.4 to 174.3 degrees, p < 0.001). However, the femoral component was in significantly greater varus position in conventional UKA (98.7 degrees) compared to robotic-assisted UKA (88.2 degrees, p < 0.001). There were significantly more revisions in the conventional UKA group (7 conversions to total knee arthroplasty, 2 tibial component exchanges) compared to robotic-assisted UKA (2 conversions to TKA, p < 0.001). Discussion. The findings of this study revealed a decreased revision rate in robotic-assisted lateral UKAs compared to conventional lateral UKA. Furthermore, patients who received robotic-assisted UKAs had a shorter postoperative hospital stay compared to patients who received conventional UKA. Implant orientation was improved in robotic-assisted UKA compared to conventional UKA. UKA is a technically challenging procedure with limited joint visualization and malaligned components may lead to impaired joint biomechanics causing pain and disease progression to other knee compartments. Robotic-assisted UKA systems offer increased accuracy of component placement with objective soft-tissue balancing which may improve the long-term survival of UKA in patients with limited lateral degenerative disease


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 49 - 49
1 Feb 2020
Gustke K Morrison T
Full Access

Introduction. In total knee arthroplasty (TKA), component realignment with bone-based surgical correction (BBSC) can provide soft tissue balance and avoid the unpredictability of soft tissue releases (STR) and potential for more post-operative pain. Robotic-assisted TKA enhances the ability to accurately control bone resection and implant position. The purpose of this study was to identify preoperative and intraoperative predictors for soft tissue release where maximum use of component realignment was desired. Methods. This was a retrospective, single center study comparing 125 robotic-assisted TKAs quantitatively balanced using load-sensing tibial trial components with BBSC and/or STR. A surgical algorithm favoring BBSC with a desired final mechanical alignment of between 3° varus and 2° valgus was utilized. Component realignment adjustments were made during preoperative planning, after varus/valgus stress gaps were assessed after removal of medial and lateral osteophytes (pose capture), and after trialing. STR was performed when a BBSC would not result in knee balance within acceptable alignment parameters. The predictability for STR was assessed at four steps of the procedure: Preoperatively with radiographic analysis, and after assessing static alignment after medial and lateral osteophyte removal, pose capture, and trialing. Cutoff values predictive of release were obtained using receiver operative curve analysis. Results. STR was necessary in 43.5% of cases with medial collateral ligament (MCL) release being the most common. On preoperative radiographs, a medial tibiofemoral angle (mTFA) ≤177° predicted MCL release (AUC = 0.76. p< 0.01) while an mTFA ≥188° predicted ITB release (AUC = 0.79, p <0.01). Intraoperatively after removal of osteophytes, a robotically assessed mechanical alignment (MA) ≥8° varus predicted MCL release (AUC = 0.84. p< 0.01) while a MA ≥2° valgus (AUC = 0.89, p< 0.01) predicted ITB release. During pose-capture, in medially tight knees, an extension gap imbalance ≥2.5mm (AUC = 0.82, p <0.01) and a flexion gap imbalance ≥2.0mm (AUC = 0.78, p <0.01) predicted MCL release while in laterally tight knees, any extension or flexion gap imbalance >0 mm predicted ITB release (AUC = 0.84, p <0.01 and AUC = 0.82, p <0.01 respectively). During trialing, in medially tight knees, a medial>lateral extension load imbalance ≥18 PSI (AUC = 0.84. p< 0.01) and a flexion load imbalance ≥ 35 PSI (AUC = 0.83, p< 0.01) predicted MCL release while, in laterally tight knees, a lateral>medial extension load imbalance ≥3 PSI (AUC = 0.97, p< 0.01) or flexion load imbalance ≥ 9.5 PSI (AUC = 0.86, p< 0.01) predicted ITB release. Of all identified predictors, load imbalance at trialing had the greatest positive predictive value for STR. Conclusion. There are limitations to the extent that TKA imbalance that can be corrected with BBSC alone if one has a range of acceptable alignment parameters. The ability to predict STR improves from pose-capture to trialing stages during detection of load imbalance. Perhaps this may be due to posterior osteophytes that are still present at pose capture. Further investigation of the relationship between the presence, location and size of posterior osteophytes and need for STR during TKA is necessary


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 88 - 88
1 Apr 2019
Kang SB Chang MJ Chang CB Yoon C Kim W Shin JY Suh DW Oh JB Kim SJ Choi SH Kim SJ Baek HS
Full Access

Background. Authors sought to determine the degree of lateral condylar hypoplasia of distal femur was related to degree of valgus malalignment of lower extremity in patients who underwent TKA. Authors also examined the relationships between degree of valgus malalignment and degree of femoral anteversion or tibial torsion. Methods. This retrospective study included 211 patients (422 lower extremities). Alignment of lower extremity was determined using mechanical tibiofemoral angle (mTFA) measured from standing full-limb AP radiography. mTFA was described positive value when it was valgus. Patients were divided into three groups by mTFA; more than 3 degrees of valgus (valgus group, n = 31), between 3 degrees of valgus to 3 degrees of varus (neutral group, n = 78), and more than 3 degrees of varus (varus group, n = 313). Condylar twisting angle (CTA) was used to measure degree of the lateral femoral condylar hypoplasia. CTA was defined as the angle between clinical transepicondylar axis (TEA) and posterior condylar axis (PCA). Femoral anteversion was measured by two methods. One was the angle formed between the line intersecting femoral neck and the PCA (pFeAV). The other was the angle formed between the line intersecting femoral neck and clinical TEA (tFeAV). Tibial torsion was defined as a degree of torsion of distal tibia relative to proximal tibia. It was determined by the angle formed between the line connecting posterior cortices of proximal tibial condyles and the line connecting the most prominent points of lateral and medial malleolus. Positive values represented relative external rotation. Negative values represented relative internal rotation. Results. Greater lateral femoral condylar hypoplasia was related to increased valgus alignment of lower extremity. Correlation coefficient between mTFA and CTA was 0.253 (p < 0.001). Valgus group showed increased CTA, which was 10.2° ± 1.9°. CTA was 7.4° ± 2.5° in neutral group and 6.6° ± 4.8° in varus group. There was significant positive correlation between the degree of valgus alignment and the degree of femoral anteversion (r = 0.145, p = 0.003). pFeAV was 16.7° ± 5.8° in valgus group, 12.1° ± 6.0° in neutral group and 10.9° ± 7.0° in varus group. There was no correlation between degree of valgus alignment and degree of femoral anteversion (r = 0.060, p = 0.218). In terms of tibial torsion, increased valgus malalignment was associated with increased tibial torsion (r = 0.374, p < 0.001). Valgus group showed increased tibial torsion than other groups. Tibial torsion was 32.6° ± 6.2° in valgus group, 26.3° ± 6.9° in neutral group and 22.6° ± 7.2° in varus group. Conclusions. Increased valgus alignment of lower extremity was related to greater lateral femoral condylar hypoplasia. However, increased valgus alignment was not related to degree of femoral anteversion whereas it was related to increased external tibial torsion. Our findings should be considered when determining proper rotational alignment in TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 111 - 111
1 Feb 2017
Chun C Chun K Baik J Lee S
Full Access

Background. This study was conducted to assess the clinical and radiologic results of total knee arthroplasty (TKA) with an allogenic bone graft using varus-valgus constrained (VVC) prostheses in knees with severe bone defects and unstable neuropathy. Methods. This study included 20 knees of 16 patients who underwent TKA between August 2001 and January 2006 due to unstable knees with severe bone destruction resulting from neuropathic arthritis. At the time of surgery, the mean age of the patients was 56 years. The mean length of the follow-up period was 10.7 years. A VVC condylar prosthesis was used with an allogenic femoral head graft to reconstruct large bony defects. Clinical results were evaluated using the Hospital for Special Surgery (HSS), Knee Society (KS) function, and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) scores. Three-dimensional computed tomography (3D-CT) was used to evaluate the radiological parameters, which included the tibiofemoral angle, loosening or osteolysis of components, and incorporation of the bone graft. Results. The preoperative mean HSS, KS function, and WOMAC scores were 40.5, 43.2, and 78.3, respectively, and these scores improved to 86.0, 64.6, and 33.8 at the final follow-up. The mean postoperative alignment was 6.1° of valgus angulation. One knee had instability, another knee had partial bony absorption, which was confirmed using 3D-CT, and the other 18 cases (90%) had satisfactory results. No cases experienced radiolucency, fracture, or infection. Conclusions. TKA with an allogenic bone graft using a VVC prosthesis provides a viable option for the treatment of severe bone defects with soft tissue insufficiency in neuropathic knee arthropathy. Level of Study: Level IV, therapeutic study


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 12 - 12
1 Jan 2016
Song IS Shin SY
Full Access

Purpose. We may consider total knee arthroplasty on one knee and unicompartmental knee arthroplasty on another knee when the patient has different grade osteoarthritis on one knee and opposite knee. Both total knee and unicompartmental knee arthroplasty had been reported as excellent clinical results, but there can be different results and different preference if the same patient undergo operation of simulataneous total knee and unicompartmental knee. We performed total and unicompartmental knee arthroplasty and pretend to report results of the clinical and radiological results and rationale of the operation. Materials and Methods. From Marth 2007 to February 2014, 23 patients, 46 knees that underwent total knee arthroplasty and unicompartmental knee arthroplasty on knees with different osteoarthritis grade in same person enrolled in this study(Fig. 1). The mean age was 64.4 years old(range:55–75) and mean follow-up period was 25.1 months(range:13–72). Results. The tibiofemoral angle changed from 4.0 of varus to 5.4 of valgus in the total knee arthroplasty, and from 0.5 of valgus to 3.8 of valgus in the unicompartmental knee arthroplasty. The mechanical axis deviation changed from varus 28.35mm to varus 3.68mm in the total knee arthroplasty, and from 16.42 to 8.81 in the unicompartmental knee arthroplasty. The average Hospital for Special Surgery Knee-Rating Scale(HSS) improved from 55.1 preoperatively to 93.4 at last follow-up in the total knee arthroplasty, and from 65.2 to 95.2 in the unicompartmental knee arthroplasty. The average WOMAC Score improved from 61.6 preoperatively to 18.0 at last follow-up in the total knee arthroplasty, and from 55.4 to 16.2 in the unicompartmental knee arthroplasty. For patient preference, 5 patients(22%) preferred the unicompartmental knee arthroplasty, and 6 patients(26%) preferred the total knee arthroplasty, and 12 patients felt no difference between two knees. 20 patients(87%) reported being ‘very satisfied’ or ‘satisfied’ in the total knee arthroplasty, and 18 patients(79%) reported in the unicompartmental knee arthroplasty. We underwent 1 case complication of tibial implant loosening and varus malalignment. So, we converted total knee arthroplasty about 3 months later(Fig. 2). Conclusions. Total knee arthroplasty and unicompartmental knee arthroplasty in same person showed satisfactory clinical and radiological results. There was no difference in preference site and postoperative range of motion showed more regainment on unicompartmental knee arthroplasty. More complications were demonstrated in unicompartmental knee arthroplasty. Total and unicompartmental knee arthroplasty in same person seems to be a good option when the both knee have different osteoarthritis grade


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_12 | Pages 43 - 43
1 Mar 2013
El-nahas W Nwachuku I Khan K Hodgkinson J
Full Access

Clinical success of total knee arthroplasty is correlated with correct orientation of the components. Controversy remains in the orthopaedic community as to whether the intramedullary or extramedullary tibial alignment guide is more accurate in the tibial cut. Is there any difference between intramedullary and extramedullary jigs to achieve better accuracy of the tibial components in total knee replacements?. A retrospective study done on 100 patients during the time period 2007 to 2010. The 100 knee replacements were done by the same surgeon, where 50 patients had the intramedullary tibial alignment guide and the other 50 had the extramedullary one. The tibiofemoral angle was measured pre-operatively as well as post operatively, the tibial alignment angle was measured post operatively then the results were statistically analysed using the SPSS. There was no significant difference between both groups regarding the tibial alignment angles. Both techniques proved accurate in producing an acceptable post operative tibial component alignment angle. We recommend orthopaedic surgeons choose either technique knowing that accuracy levels are similar. The debate between intramedullary and extramedullary tibial cutting jigs/guides/ devices continues and most orthopaedic surgeons will use their preferred technique and will continue to achieve good post operative results as we have found in our centre. Our study is rare due to the fact we have a single surgeon performing both techniques, therefore controlling for any surgical experience or operating technique differences


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 134 - 134
1 Jan 2016
Kuwashima U Tashiro Y Okazaki K Mizu-uchi H Hamai S Okamoto S Iwamoto Y
Full Access

«Purpose». High tibial osteotomy (HTO) is a useful treatment option for osteoarthritis of the knee. Closing-wedge HTO (CW-HTO) had been mostly performed previously, but the difficulties of surgical procedure when total knee arthroplasty (TKA) conversion is needed are sometimes pointed out because of the severe deformity in proximal tibia. Recently, opening-wedge HTO (OW-HTO) is becoming more popular, but the difference of the two surgical techniques about the influence on proximal tibia deformity and difficulties in TKA conversion are not fully understood. The purpose of this study was to compare the influence of two surgical techniques with CW-HTO and OW-HTO on the tibial bone deformity using computer simulation and to assess the difficulties when TKA conversion should be required in the future. «Methods». In forty knees with medial osteoarthritis, the 3D bone models were created from the series of 1 mm slices two-dimensional contours using the 3D reconstruction algorithm. The 3-D imaging software (Mimics, materialize NV, Leuven, Belgium) was applied and simulated surgical procedure of each CW-HTO and OW-HTO were performed on the same knee models. In CWHTO, insertion level was set 2cm below the medial joint line [Fig.1]. While in OW-HTO, that was set 3.5cm below the medial joint line and passed obliquely towards the tip of the fibular head [Fig.2]. The correction angle was determined so that the postoperative tibiofemoral angle would be 170 degrees. The distance between the center of resection surface and anatomical axis, and the angle of anatomical axis and mechanical axis were measured in each procedure. Secondly, a simulated TKA conversion was operated on the each tibial bone models after HTO [Fig.3]. The distance between the nearest points of tibial implant and lateral cortical bone was assessed as the index of the bone-implant interference. «Results». The distance between the center of resection surface and anatomical axis was significantly shifted to the lateral side in CW group (0.62 ±2.95 mm lateral shift) than in OW group (0.93 ± 3.68 mm medial shift) (P<0.01). The angle of anatomical axis and mechanical axis was significantly increased in the CW group (CW: 0.77 ± 0.79 degree, OW: 0.49 ± 0.83 degree, P<0.01). In the simulation of TKA conversion, if thickness of the lateral cortical bone was 3mm, it was showed that the tibial implant was more interfered with the lateral cortical bone in CW group (2.77 ± 1.38 mm) than in OW group (4.32 ± 1.61 mm) (P<0.01). «Conclusions». The results suggested that bone deformity in proximal tibia after HTO might affect the difficulty of TKA conversion, particularly in the case of CWHTO


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 32 - 32
1 May 2016
Carroll K Barlow B Mclawhorn A Esposito C Mayman D
Full Access

Introduction. Neutral mechanical alignment in TKA has been shown to be an important consideration for survivorship, wear, and aseptic loosening. However, native knee anatomy is described by a joint line in 3° of varus, 2–3° of mechanical distal femoral valgus, and 2–3° of proximal tibia varus. Described kinematic planning methods replicate native joint alignment in extension without changing tibiofemoral alignment, but do not account for native alignment through a range of motion. An asymmetric TKA femoral component with a thicker medial femoral condyle and posterior condylar internal rotation paired with an asymmetric polyethylene insert aligns the joint line in 3° of varus while maintaining distal femoral and proximal tibial cuts perpendicular to mechanical axis. The asymmetric components recreate an anatomic varus joint line while avoiding tibiofemoral malalignment or femoral component internal rotation, a risk factor for patellofemoral maltracking. The study seeks to determine how many patients would be candidates for a kinematically planned knee without violating the principle of a neutral mechanical axis (0° ± 3°). Methods. A cohort comprised of 55 consecutive preoperative THA patients with asymptomatic knees and 55 consecutive preoperative primary unilateral TKA patients underwent simultaneous biplanar radiographic imaging. Full length coronal images from the thoracolumbar junction to the ankles were measured by two independent observers for the following: mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), and mechanical medial proximal tibial angle (mMPTA). Patients who met the following conditions: mTFA 0°±3°; mLDFA 87°±3°; and mMPTA 87°±3°, were considered candidates for TKA with an asymmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Similarly, patients with the following conditions: mTFA 0°±3°; mLDFA 90°±3°; and mMPTA 90°±3°, were considered candidates for TKA with a symmetric implant that would achieve a kinematic joint line and neutral mechanical axis. Results. In this cohort of 110 patients, the mean mTFA was 1° varus ± 5°, the mean mLDFA was 87° ± 3°, mMPTA 87°± 2°. The comparison of patients meeting each of the three conditions required for a TKA with a neutral mechanical axis and a kinematic joint line are outlined in Table 1. Conclusion. A TKA with kinematic 3° varus joint line and neutral mechanical axis was possible in 52% of patients using an asymmetric implant and 23% of patients using a symmetric implant. Previous descriptions of kinematic planning using standard TKA components required compromise of neutral mechanical axis alignment with detrimental effects on overall survivorship. Knee arthroplasty using an asymmetric implant may achieve the best of both worlds, neutral mechanical axis and a kinematic joint line, in a large percentage of patients


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 96 - 96
1 May 2016
Kim K Lee S Kim J Shin W
Full Access

Background. In this study, we investigated the long-term clinical results and survivorship of minimally invasive unicompartmental knee arthroplasty (UKA) by collecting cases that have been implanted for >10 years ago. Methods. Medial UKA on 180 cases in 142 patients was performed over a period of 1 year after the first introduction of minimally invasive UKA from January 2002 to December 2002. Among these, 166 cases in 128 patients who underwent Oxford phase 3 medial UKA using the minimally invasive surgery, with the exclusion of 14 cases including 10 cases of follow-up loss and 4 cases of death, were selected as the subject. The mean age of the patients at the time of surgery was 61 years, and the duration of the follow-up was minimum 10 years. All the preoperative diagnosis was osteoarthritis of the knee joint. Clinical and radiographic assessments were measured by the Knee Society clinical rating system, and the survival analysis was confirmed by the Kaplan–Meier method with 95% confidence interval (CI). Results. The mean Knee Society knee and function scores improved significantly from 53.8 points (25 to 70) and 56.1 points (35 to 80) preoperatively to 85.4 points (58 to100) and 80.5 points (50 to 100) at 10-year follow-up, respectively(P<0.001). The mean range of the motion of the knee joint recovered from 128.6° (110° to 135°) to 132.5o (105o to 135o) (P<0.001), and the tibiofemoral angle changed from the mean 0.2° of varus (7o of varus to 7o of valgus) to 4.6° of valgus (2° of varus to 11° of valgus) under the weight-bearing X-ray (P<0.001). Failures following the UKA occurred in 16 cases in 14 patients out of a total of 166 cases (9.6%), and the mean time of the occurrence of the failure was 6.2 years after the surgery. The causes of the failure included 7 cases of simple dislocation of mobile bearing, 4 cases of loosening of implant, 1 case of dislocation of mobile bearing accompanied by loosening of implant, and 1 case of dislocation of mobile bearing accompanied by the rupture of the medial collateral ligament (MCL). Moreover, there was 1 case of fracture of polyethylene bearing, 1 case of deep infection and 1 case of failure because of medial tibial condylar fracture. Of the total of 16 cases of failures, 11 cases (69%) were treated with revision total knee arthroplasty (TKA), whereas 5 cases (31%) were treated with a simple change of mobile bearing. The 10-year survival rate was 90.5% (95% CI, 85.9 to 95.0) when failure was defined as all the reoperations, whereas the 10-year survival rate was 93.4% (95% CI, 89.6 to 97.1) when the cases in which only revision TKA was defined as failure. Conclusions. The results of this study show outstanding functions of the knee joint and satisfactory 10-year survival rate after minimally invasive UKA. Therefore, minimally invasive UKA could be a useful method in the treatment of osteoarthritis in one compartment of knee joint


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 86 - 86
1 May 2013
Mullaji A
Full Access

Varus deformity encompasses a wide spectrum of pathology and merits individualised treatment. In most knees there is loss of articular cartilage or bone medially; this is associated with contractures of posteromedial structures of varying rigidity. In addition, there may be significant elongation of lateral ligamentous structures, and associated extra-articular femoral or tibial bowing or angulation. The principles of correction of varus include (i) a thorough clinical and radiological assessment of the limb before surgery and examination under anesthesia, (ii) appropriate bone cuts to correctly orient prostheses and restore normal alignment of the limb, (iii) equalising medial and lateral balance in flexion and extension by soft tissue releases and concomitant bony procedures and (iv) addressing associated bony defects and extra-articular deformity. Examples of each of these situations will be shown along with the technique deployed. Results of conventional TKA in treating 173 knees with varus deformity exceeding 20o will be presented. Our technique of selective posteromedial release, reduction osteotomy of posteromedial tibial flare, sliding medial condylar osteotomy and bone grafting of medial defects, with preservation of medial collateral ligament integrity will be shown. The method of correcting extra-articular deformity will be depicted. With these techniques, mean tibiofemoral angle of 22.7 degrees varus pre-operatively (range 15–62) was corrected to 5.3 degrees valgus (range 2–9) post-operatively. 86% knees were in 4–10 degrees valgus post-operatively. Recent experience with CAS in treating over 200 patients with deformity exceeding 20 degrees will be presented along with the risk factors leading to malalignment. Correction of severe varus deformity by the techniques reported can successfully restore alignment, painfree motion, and stability without the use of highly constrained implants


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 34 - 34
1 Jan 2016
Bell C Meere P Borukhov I Rathod P Walker P
Full Access

Soft tissue balancing in total knee replacement may well be the determining factor in raising the fair patient satisfaction. The development of intelligent implants allows quantification of reactive loads to applied pressures. This can be tested in dynamic mode such as heel push test at surgery, or in static mode such as when testing for varus/valgus (VV) laxity of the collateral ligaments of the knee. We postulate that a well-balanced knee will have comparable if not equal load distribution across compartments in dynamic loading. When tested for laxity, we anticipate an equal or comparable response to VV applied loads under physiologic load range of 10–50N. This study sought to analyze the relationship between the kinematic (joint motion) and kinetic (force) effects to VV testing in the 0–15 degrees range of flexion. One goal was to demonstrate that testing the knee in locked extension (Screw Home effect) is unreliable and should be abandoned in favor of the more reliable VV testing at 10–15 degrees of flexion. This is a preliminary cadaveric study utilizing data from two hemibodies. The pelvis was fixed in a custom test rig with open or closed chain lower leg testing capability along a sliding rail with foot VV translational. Forces were applied at the malleoli with a wireless hand held dynamometer. Kinematic analysis of the hip-knee-ankle (HKA) tibiofemoral angle was derived from a commercial navigation system with mounted infrared trackers. Kinetic analysis was derived from a commercially available sensor imbedded in a tibial trial liner. Balance was optimized by conventional methods with the use of the sensor feedback until loads were roughly symmetrical and VV testing yielded symmetrical rise in opposite compartments. The VV testing was then performed with the knees locked at the femoral side in axial rotation and translational motion in any plane. Sagittal flexion was pre-set at 0, 10, and 15 degrees and progressive load was applied. Results. From the graphs one can observe significant differences between VV testing at 0 degrees (locked Screw Home), 10 degrees, and 15 degrees of flexion. The shaded area corresponds to the common range of VV stress testing loading pressure, typically less than 35N. The HKA deviates from neutrality no sooner than by the middle of the physiologic test zone. By 35N, the magnitude of the effect is also much less than that observed at 10 and 15 degrees (unlocked from Screw Home). From the kinetic analysis one can also note the significant difference in the High-Low spread throughout the testing range of applied pressure. If the surgeon tests in the low range of applied loads, he/she may not observe the kinematic joint opening effect. The kinetic effect seems more reliable as sensed loads are detectable earlier on. It is clear however that testing at 10–15 degrees offers a much better sensitivity to the VV laxity or stiffness as exemplified in the bottom portions of the figure. Therefore testing in locked Screw Home full extension may lead to underestimation of the true coronal laxity of the joint


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 223 - 223
1 Mar 2013
Kim K
Full Access

Purpose. To identify the causes of failure after unicompartmental knee arthroplasty (UKA), and to evaluate considerations for surgical procedures and the results of revision total knee arthroplasty (TKA) performed after failure of UKA. Materials and Methods. Eight hundreds and fifty-two cases of UKA were performed from January 2002 to June 2011. Forty-seven cases of failures after UKA were analyzed for the cause of the failures, and thirty-five cases of revision TKA after failure were analyzed for the operative findings and surgical technique. The clinical results were measured for thirty cases which were followed-up on at least two years after TKA. The mean duration of follow-up was four years and one month after revision TKA and the mean patient age at the time of surgery was sixty-five years. Results. For the cause of failures after UKA, there were twenty-two cases of early loosening of prosthesis, seventeen cases of simple mobile bearing dislocation, five cases of infection, one case of fracture of medial tibial condyle and two cases of unknown origin pain. In operative findings of thirty-five cases of TKA after failed UKA, there were twenty-five cases of bone defect requiring treatment and the mean thickness of the defect was 10.6 mm. For the treatment of bone defect, there were five cases of autogenous bone graft, twenty-one cases of metal blocks, and one case of autogenous bone graft with metal block. The stem was used in tibial implants for nineteen cases, and one case of use in tibial and femoral implants. For thirty cases where follow ups were possible at least two years after operation, the mean knee score was improved from 68.2 to 85.2 and the mean knee function score was improved from 67.7 to 78.0 at the last follow-up, respectively. The mean range of knee motion was 107.2° pre-operatively, which was recovered to 120.7° after the operation. The mean tibiofemoral angle was changed from 1.7° of valgus to 5.2° of valgus. Conclusion. As shown in this study, the tibial bone defect was the most important problem in revision TKA after failure of UKA. Therefore, proper indication and accurate surgical technique using autogenous bone graft, metal block and stemmed implants would be able to achieve satisfactory results in revision TKA after failure of UKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 39 - 39
1 Oct 2014
Song EK Seon JK Seol JH Kim HS Kim G
Full Access

The radiologic and clinical results of High Tibial Osteotomies (HTO) strongly rely on the accuracy of correction, and inadequate intraoperative measurements of the leg axis can lead to over or under- correction. Over the past few years, navigation systems have been proven that navigation systems provide reliable real-time intro-operative information, may increase accuracy, and improves the precision of orthopaedic surgeries. We assessed the radiological and clinical results of navigation- assisted open wedge HTO versus conventional HTO at 24 months after surgery. A total of sixty-five open wedge HTOs were performed using navigation system and compared with forty-six open HTOs that had been performed using the conventional cable technique in terms of intraoperative leg axis assess. The Orthopilot navigation system (HTO version 1.3, B. Braun Aesculap, Tuttligen, Germany) used throughout the procedure of navigated open wedge HTO. The aim of the correction was to achieve of 3°of valgus (2–4°) on both method. For the radiological evaluation, postoperative leg axes were examined using weight bearing full-leg radiography obtained at postoperative two years after surgery. To assess correction accuracies, we compared mechanical tibiofemoral angles and intersections of the mechanical axis of the tibial plateau (%) in both groups. Outliers were defined as under-corrections of < 2° of valgus and as over-corrections of > 5° of valgus. The posterior slope of the proximal tibia was measured using the proximal tibial anatomical axis (PTAA) method. HSS (Hospital for Special Surgery) scores and ROMs (ranges of motion) were evaluated and all complications were recorded and surgical and radiation times were measured. Navigated HTOs corrected mechanical axes to 2.8° valgus (range −3.1∼5.3) with few outliers (9.5%), and maintained posterior slopes (8.5±2.3° preoperatively and 11.0±2.8° postoperatively) (P>0.05). In the conventional group, the mean valgus correction was satisfactory (2.2° valgus), but only 67.4% were within the required range (2∼5° valgus), and 26.1% of cases were under-corrected and 6.5% of cases were over-corrected. Posterior slope increased from 8.0° to 10.6° on average without significant change after surgery. Total fluoroscopic radiation time during navigated HTO was 8.1 seconds (5∼12s) as compared with 46.2 seconds (28∼64 s) during conventional HTO (p<0.05). The surgery time for navigated HTO was 11.2 minutes longer than for conventional HTO (55.5 minutes). No specific complications related to the navigation were encountered. At clinical follow up, mean HSS scores of the navigated HTO and conventional groups improved to 91.8 and 92.5 from preoperative values of 55.3 and 55.9, respectively (p>0.05), and all patients achieved full ROM. Navigation for HTO significantly improved the accuracy of postoperative leg axis, and decreased the variability of correction with fewer outliers, and without any complications. Moreover, it allows multi-plane measurements to be made, in the sagittal and transverse planes as well as the frontal plane intra-operatively in real time, compensates to some extent for preoperative planning shortcomings based on radiography, and significantly reduces radiation time


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 136 - 136
1 Sep 2012
Park SE Lee CT
Full Access

Introduction. Recently robotic-assisted total knee replacement has become a new emerging method of artificial joint implantation, especially in Europe and Asia. We have belived that robotic cutting would result in an improved clinical outcome due to the better fit and alignment of the prosthesis but that has never been proven to our knowledge. The purpose of this study was to compare robotic-assisted implantation of a total knee replacement with conventional manual implantation. Methods. We reviewed 72 patients who were scheduled for total knee arthroplasty, divided to have either conventional manual implantation of a Zimmer LPS prosthesis (30 patients: Group I) or robotic-assisted implantation of such a prosthesis (32 patients: Group II). The five-axis ROBODOC was used for the robotic-assisted procedures. Radiographs were made at this interval and analyzed for evidence of loosening, prosthetic alignment, and other complications. Independent T-test or Mann-Whitney test was used for statistical analysis at probability level of 95%. SPSS for Windows was used. Results. The age of group I was 67.8±6.44 years and that of group II was 62.7±6.51 years. The follow up period of group I was 31.3±3.47 months and that of group II was 27.0±0.69 years. In clinical assessment, there was no difference statistically. In radiological assessment, the postoperative tibiofemoral angles of group I was 5.3±2.6 degrees and that of group II was 6.0±1.8 degrees. There was no difference statistically. The α and β angle of group I was 95.6±2.65, 88.6±2.58 degrees and that of group II was 97.7±0.97, 88.8±1.59 degrees. There was no difference statistically. The γ and δ angle of group I was 4.19±3.28, 85.5±0.92 degrees and that of group II was 0.17±0.65, 89.7±1.7 degrees. There was a significant statistical difference(P<0.05). The complications were observed in Group II: 1 superficial infection, 1 patellar tendon rupture, 1 postoperative supracondylar fracture and 1 peroneal nerve palsy. Discussion. The robotic-assisted technology had definite advantages in terms of preoperative planning, the accuracy of the intraoperative procedure and postoperative follow up in lateral knee radiograph, especially in γ and δ angle. But disadvantages were the high complication rate, which we believe was required for the more careful and experienced operative technique. We need further kinematical study about the clinical importance of γ and δ angle in TKA patients, especially wear pattern etc before robotic popular usage in USA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 135 - 135
1 Sep 2012
Park SE Kim SK
Full Access

Introduction. Patient demand for a less invasive surgical approach reducing the trauma induced to the joint has resulted in the development of Minimally Invasive Surgery (MIS). Although the length of the surgical incision is appealing to patients, the changes are not purely cosmetic. The surgery should not violate the extensor mechanism in any way. Incisions into the quadriceps tendon or into the vastus medialis muscle make the approach less difficult but this violation will slow the recovery and affect the ROM of the knee. In Asian knees, authors found the variation of VMO, which is essential in early functional recovery in TKA patient, is so much, so new clinical test for MIS QS should be needed to show location relationship between the upper pole of the patella and the insertion of VMO itself to avoid unnecessary injury of VMO during TKA. Purpose. The purpose of this comparison study was to verify whether MIS QS TKA can be a more functional and better method in treatment of advanced degenerative arthritis comparing with mini MIS TKA. Methods. Group I: MIS QS group were 50 knees (69.3±9.7 years) and follow up period of that were 28.8± 0.4 months. Group II: mini quad split MIS TKA were 200 knees knees (67.4±5.6 years) and follow up period of that were 34.2± 0.6 months. We did clinical and radiological assessment. Results. The length of incision of group I was 9.32±0.96 cm and that of group II was 10.9±0.5 cm. In clinical assessment, the postoperative pain score of group I was 47.5±2.74 points and that of group II was 47.4±3.27 points. The postoperative knee score of group I was 94.5±5.16 points and that of group II was 93.9±5.94 points. The postoperative knee functional score of group I was 90±8.94 points and that of group II was 93.4±6.73 points. The postoperative range of motion of group I was 122±16.9 degrees and that of group II was 116±23.5 degrees. In radiological assessment, The postoperative tibiofemoral angles of group I was 5±2.6 degrees and that of group II was 5.4±2.7 degrees. The α and β angle of group I was 95±3.5, 88±3.4 degrees and that of group II was 96±2.5, 89±2.4 degrees. The γ and δ angle of group I was 5.17±4.12, 85±1.4 degrees and that of group II was 3.96±3.1, 86±1.8 degrees. Conclusions. There were no significant differences in functions between two groups. Both MIS QS and mini Quad split TKA are an effective and safe method in treatment of advanced degenerative arthritis