Advertisement for orthosearch.org.uk
Results 1 - 20 of 45
Results per page:
Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2015
Duncan C
Full Access

Cementless stem fixation is a widely used method of stem revision in North America and elsewhere in the world. There is abundant literature in its support. Most of the reports from 1985 to 2005 related to proximally or extensively porocoated designs, the former falling into disfavor with time because of unpredictable outcomes. With few exceptions (eg S-ROM) the modularity of these designs was limited to the head/neck junction. But this generation of designs was associated with some issues such as insertional fractures, limited control of anteversion (and risk of dislocation), limited applicability in the setting of severe bone loss (Paprosky Type 4 osteolysis or Vancouver Type B3 periprosthetic fracture), as well as ongoing concern relating to severe proximal stress shielding. In the past decade we have seen the mounting use of a new design concept: tapered fluted titanium stems (TFTS), which incorporate the advantages of titanium (for less flexural rigidity), conical taper (for vertical taper-lock stability), longitudinal ribs and flutes (for rotational stability), and surface preparation which attracts bone on growth for long term fixation. Four consecutive reports from our center have documented the superiority of the TFTS in our hands, with encouraging outcomes even when dealing with severe bone loss or periprosthetic fractures. There is an increasing body of other literature which reports a similar experience. Furthermore, with increasing experience and confidence in this design, we now use a monoblock or non-modular design in greater than 95% of cases in which a TFTS is indicated at our center. This circumvents the potential drawbacks of stem modularity, including taper corrosion and taper junction fracture


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 104 - 104
1 May 2016
De Almeida S Chong M Board T Turaev A
Full Access

Background. KAR™ prosthesis was introduced following the success of Corail® femoral stem to tackle difficult revision cases (Paprosky type1, 2a, 2b and 3a). The ARTO group reported a success rate of 94% at 17 years follow-up. Only two independent studies reported similar success rate to date. Purpose. To analyse the short-term performance of the KAR™ prosthesis used in our unit. Methods. This was a retrospective study of all KAR™ prosthesis between 2005 and 2013. Basic demographic, stem size, indications, failures and complications were recorded. X-rays were analysed for evidence of implant failure and distal cortical hypertrophy. Results. A total of 83 cases were analysed. The mean age was 68 (range 38–88 years) with an average follow-up was 3 years (range 1–8 years). The main indications for revision were aseptic loosening (83.7%), and periprosthetic fractures (7%). Kaplan-Meier Survival Rate for ‘all reasons of failure’ and ‘stem loosening’ was 93.83% and 100% respectively at 3 years follow-up. The most common reason for failure following KAR™ revision was periprosthetic fracture (3 cases). All three cases had radiographic evidence of proximal bone loss prior to index revision. Two patients developed deep infection and one patient had stem subsidence requiring revision. One patient sustained dislocation but revision surgery was not required. When comparing the effect of cortical hypertrophy, there were no significant differences in the measured distal canal/cortical diameter over the entire period of follow-up. Discussion. KAR™ prosthesis offers respectable clinical performance over a short-term period. Revision rate for this system was comparable to other ‘independent non-designer’ study. The three patients that sustained periprosthetic fracture may have been better served with a distally locked stem revision system. We believe that this HA coated implant encourages consistent osseointegration around the metaphysis region when there is evidence of a sound distal fixation. Conclusion. This study confirms that this fully coated hydroxyapatite titanium stem offers reliable clinical performance in revision arthroplasty


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 285 - 285
1 Dec 2013
Deshmukh A Rodriguez J Cornell C Rasquinha V Ranawat A Ranawat CS
Full Access

Introduction:. Severe bone loss creates a challenge for fixation in femoral revision. The goal of the study was to assess reproducibility of fixation and clinical outcomes of femoral revision with bone loss using a modular, fluted, tapered distally fixing stem. Methods:. 92 consecutive patients (96 hips) underwent hip revision surgery using the same design of a modular, fluted, tapered titanium stem between 1998 and 2005. Fourteen patients with 16 hips died before a 2-year follow-up. Eighty hips were followed for an average of 11.3 years (range of 8 to 13.5 years). Bone loss was classified as per Paprosky's classification, osseointegration assessed according to a modified system of Engh et al, and Harris Hip Score was used to document pain and function. Serial radiographs were reviewed by an independent observer to assess subsidence, osseointegration and bony reconstitution. Results:. The average patient age was 68 years at the time of surgery (range 40 to 91). 80% hips had at least Paprosky type 3A proximal bone loss and 41% had an associated proximal femoral ostoetomy. Pre-operative Harris Hip scores (HHS) averaged 50.368 (range 22 to 72.775) and improved to an average HHS of 87.432 (range 63.450 to 99.825) at last follow-up. The HHS improved an average of 37.103 points (range 13.750 to 58.950). Radiographically, osseointegration was evident in all hips. No hips had measurable migration beyond 5 mm. 61%) hips had evidence of bone reconstitution and 27% demonstrated diaphyseal stress shielding. One well-fixed distal stem was revised for stem fracture, and two proximal segments were revised for recurrent dislocation. Conclusion:. Reproducible fixation and clinical improvement were consistently achieved with this stem design in the setting of femoral bone loss


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 245 - 245
1 Jun 2012
Deshmukh A Rodriguez J Klauser W Rasquinha V Lubinus P Ranawat C Thakur R
Full Access

Introduction. Studies have documented encouraging results with the use of fluted, tapered, modular, titanium stems in revision hip arthroplasty with bone loss. However, radiographic signs of osseointegration and patterns of reconstitution have not been previously categorized. Materials and Methods. 64 consecutive hips with index femoral revision using a particular stem of this design formed the study cohort. Serial radiographs were retrospectively reviewed by an independent observer. Bone loss was determined by Paprosky's classification. Osseointegration was assessed by a slight modification of the criteria of Engh et al. Femoral restoration was classified according to Kolstad et al. Pain and function was documented using Harris Hip Score (HHS). Results. Mean patient age was 68.3 years and radiographic follow-up 6.2 years. 74% femora had type 3 or 4 bone loss. All distal segments were radiographically osseointegrated. Proximal segment radiolucent lines were frequent (40%). Early minor subsidence occured in 4 (6.2%) hips. Definite bony regeneration was documented in 73% femora and stress-shielding in 26%. HHS improved from a pre-operative mean of 50.1 points to 86.2 at most recent follow-up. Discussion. A consistent pattern of bony remodeling and osseointegration occurred which could be applied for assessment of fixation and stability of this stem. The well established criteria of osseointegration for cylindrical cobalt-chrome stems may have to be altered for application to these stems as the mechanism of load transfer is entirely different. Stems with diameter of 18mm or greater are clearly predisposed to stress shielding, predominantly at the mid-shaft region


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 322 - 322
1 Mar 2013
Sedel L
Full Access

Starting in 1977 a new cemented stem made of titanium alloy (with vanadium) was designed regarding some principle: rectangular shape, smooth surface covered with thin layer of titanium oxide, filling the medullar cavity. As a consequence: a thin layer of cement. It was designed with a collar. Initial Cementing technique used dough cement, vent tube and finger packing; then we applied cement retractor low viscosity cement and sometimes Harris Syringe. At the moment we went back to initial technique plus a cement retractor made of polyethylene. Many papers looked at long term follow up results depicting about 98 to 100 percent survivors at 10 years and 95 to 98% at 20 years (Hernigou, Hamadouche, Nizard, El Kaim). Clinical as well as radiological results are available. Radiological results depicted some radiolucent lines that appeared at the very long term. They could be related to friction between the stem and the cement. As advocated by Robin Ling, he called “French paradox” the fact that if a cemented prosthesis is smooth and fills the medullary cavity, long term excellent results could be expected. This was the case with stainless steel Kerboull shape, the Ling design (Exeter)and the Ceraver design. The majority of these stems were implanted with an all alumina bearing system. And in some occasion, when revision had to be performed, the stem was left in place (108 cases over 132 revisions). Our experience over more than 5000 stems implanted is outstanding (see figure 1: aspect after 30 years). Discussion other experience with cemented titanium stem were bad (Sarmiento, Fare). We suspect that this was related either to the small size of this flexible material, or to the roughness of its surface. If one uses titanium cemented stem it must be large enough and extra smooth


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 62 - 62
1 Jun 2018
Garbuz D
Full Access

The goals of revision total hip on the femoral side are to achieve long term stable fixation, improve quality of life and minimise complications such as intra-operative fracture or dislocation. Ideally these stems will preserve or restore bone stock. Modular titanium stems were first introduced in North America around 2000. They gained popularity as an option for treating Paprosky 3B and 4 defects. Several studies at our institution have compared modular titanium stems with monoblock cobalt chromium stems. The main outcomes of interest were quality of life. We also looked at complications such as intra-operative fracture and post-operative dislocation. We also compared these 2 stems with respect to restoration or preservation of bone stock. In 2 studies we showed that modular titanium stems gave superior functional outcomes as well as decreased complications compared to a match cohort of monoblock cobalt chromium stems. As mentioned, one of the initial reasons for introduction of these stems was to address larger femoral defects where failure rates with monoblock cobalt chromium stems were unacceptably high. We followed a group of 65 patients at 5–10 years post revision with a modular fluted titanium stem. Excellent fixation was obtained with no cases of aseptic loosening. However, there were 5 cases of fracture of the modular junction. Due to concerns of fracture of the modular junction, more recently, at our institution, we have switched to almost 100% monoblock fluted titanium stems. We recently reviewed our first 100 cases of femoral revision with a monoblock stem. Excellent fixation was achieved with no cases of aseptic loosening. Quality of life outcomes were similar to our previous reported series on modular tapered titanium stems. Both monoblock and modular fluted titanium stems can give excellent fixation and excellent functional outcomes. This leaves a choice for the surgeon. For the low volume revision surgeon modular tapered stems are probably the right choice. Higher volume surgeons or surgeons very comfortable with performing femoral revision may want to consider monoblock stems. If one is making the switch it would be easiest to start with a simple case. Such a case would be one that can be done with a endofemoral approach. In this approach the greater trochanter is available as the key landmark for reaming. After the surgeon is comfortable with this stem more complex cases can easily be handled with the monoblock stem. In summary, both modular and monoblock titanium stems are excellent options for femoral revision. As one becomes more familiar with the monoblock stem it can easily become your workhorse for femoral revision. At our institution we introduced a monoblock titanium stem in 2011. It started out at 50% of cases and now it is virtually used in almost 100% of revision cases


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 96 - 96
1 Aug 2017
Garbuz D
Full Access

The goals of revision total hip on the femoral side are to achieve long term stable fixation, improve quality of life and minimise complications such as intra-operative fracture or dislocation. Ideally these stems will preserve or restore bone stock. Modular titanium stems were first introduced in North America around 2000. They gained popularity as an option for treating Paprosky 3B and 4 defects. Several studies at our institution have compared the modular titanium stems with monoblock cobalt chromium stems. The main outcomes of interest were quality of life. We also looked at complications such as intra-operative fracture and post-operative dislocation. We also compared these 2 stems with respect to restoration or preservation of bone stock. In 2 studies we showed that modular titanium stems gave superior functional outcomes as well as decreased complications compared to a match cohort of monoblock cobalt chromium stems. As mentioned one of the initial reasons for introduction of these stems was to address larger femoral defects where failure rates with monoblock cobalt chromium stems were unacceptably high. We followed a group of 65 patients at 5–10 years post-revision with a modular fluted titanium stem. Excellent fixation was obtained with no cases of aseptic loosening. However, there were 5 cases of fracture of the modular junction. Due to concerns of fracture of the modular junction more recently at our institution we have switched to almost 100% monoblock fluted titanium stems. We recently reviewed our first 100 cases of femoral revision with monoblock stem. Excellent fixation was achieved with no cases of aseptic loosening. Quality of life outcomes were similar to our previous reported series on modular tapered titanium stems. Both monoblock and modular fluted titanium stems can give excellent fixation and excellent functional outcomes. This leaves a choice for the surgeon. For the low volume revision surgeon modular tapered stems are probably the right choice. Higher volume surgeons or surgeons very comfortable with performing femoral revision may want to consider monoblock stems. If one is making the switch it would be easiest to start with a simple case. Such a case would be one that can be done with an endofemoral approach. In this the greater trochanter is available as the key landmark for reaming. After the surgeon is comfortable with this stem more complex cases can easily be handled with the monoblock stem. In summary, both modular and monoblock titanium stems are excellent options for femoral revision. As one becomes more familiar with the monoblock stem it can easily become your workhorse for femoral revision. At our institution we introduced a monoblock titanium stem in 2011. It started out at 50% of cases and now it is virtually used in almost 100% of revision cases


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 97 - 97
1 Nov 2016
Garbuz D
Full Access

The goals of revision total hip on the femoral side are to achieve long term stable fixation, improve quality of life and minimise complications such as intra-operative fracture or dislocation. Ideally these stems will preserve or restore bone stock. Modular titanium stems were first introduced in North America around 2000. They gained popularity as an option for treating Paprosky 3B and 4 defects. Several studies at our institution have compared the modular titanium stems with monoblock cobalt chromium stems. The main outcomes of interest were quality of life. We also looked at complications such as intra-operative fracture and post-operative dislocation. We also compared these 2 stems with respect to restoration or preservation of bone stock. In two studies we showed that modular titanium stems gave superior functional outcomes as well as decreased complications compared to a matched cohort of monoblock cobalt chromium stems. As mentioned one of the initial reasons for introduction of these stems was to address larger femoral defects where failure rates with monoblock cobalt chromium stems were unacceptably high. We followed a group of 65 patients at 5–10 years post-revision with a modular fluted titanium stem. Excellent fixation was obtained with no cases of aseptic loosening. However, there were 5 cases of fracture of the modular junction. Due to concerns of fracture of the modular junction more recently, at our institution we have switched to almost 100% monoblock fluted titanium stems. We recently reviewed our first 100 cases of femoral revision with monoblock stem. Excellent fixation was achieved with no cases of aseptic loosening. Quality of life outcomes were similar to our previous reported series on modular tapered titanium stems. Both monoblock and modular fluted titanium stems can give excellent fixation and excellent functional outcomes. This leaves a choice for the surgeon. For the low volume revision surgeon modular tapered stems are probably the right choice. Higher volume surgeons or surgeons very comfortable with performing femoral revision may want to consider monoblock stems. If one is making the switch it would be easiest to start with a simple case. Such a case would be one that can be done through an endofemoral approach. In this the greater trochanter is available as the key landmark for reaming. After the surgeon is comfortable with this system more complex cases can easily be handled with the monoblock stem. In summary, both modular and monoblock titanium stems are excellent options for femoral revision. As one becomes more familiar with the monoblock stem it can easily become your workhorse for femoral revision. At our institution, we introduced a monoblock titanium stem in 2011. It started out at 50% of cases and now it is virtually used in almost 100% of revision cases


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 10 - 10
1 Apr 2017
Su E
Full Access

In recent years, cementless stems have dominated the North American market. There are several categories of cementless stems, but in the past 20 years, the two most popular designs in the United States have been the extensively coated cylindrical cobalt-chrome (CoCr) stem and the proximally coated tapered titanium stem, which in recent years has become the most common. The 10-year survival for both stem types has been over 95% with a distinction made on factors other than stem survival, including thigh pain, stress shielding, complications of insertion, and ease of revision. Conventional wisdom holds that proximally coated titanium stems have less stress shielding, less thigh pain, and a higher quality clinical result. Recent studies, however, including randomised clinical trials have found that the incidence of thigh pain and clinical result is essentially equivalent between the stem types, however, there is a modest advantage in terms of stress shielding for a tapered titanium stem over an extensively coated CoCr stem. One study utilizing pain drawings did establish that if a CoCr cylindrical stem was utilised, superior clinical results in terms of pain score and pain drawings were obtained with a fully coated versus a proximally coated stem. In spite of the lack of a clinically proven advantage in randomised trials, tapered titanium stems have been favored because of the occasional occurrence of substantial stress shielding, the increased clinical observation of thigh pain severe enough to warrant surgical intervention, ease of use of shorter tapered stems that involve removal of less trochanteric bone and less risk of fracture both at the trochanter and the diaphysis due to the shorter, and greater ease of insertion through more limited approaches, especially anterior approaches. When tapered stems are utilised, there may be an advantage to a more rectangular stem cross-section in patients with type C bone. In spite of the numerous clinical advantages of tapered titanium stems, there still remains a role for more extensively coated cylindrical stems in patients that have had prior surgery of the proximal femur, particularly for a hip fracture, which makes proximal fixation, ingrowth, and immediate mechanical stability difficult to assure consistently. Cement fixation should also be considered in these cases. While the marketplace and the clinical evidence strongly support routine use of tapered titanium proximally coated relatively short stems with angled rather than straight proximal lateral geometry in the vast majority of cases, there still remains a role for more extensively coated cylindrical and for specific indications


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 10 - 10
1 Feb 2015
Su E
Full Access

In recent years, cementless stems have dominated the North American market. There are several categories of cementless stems, but in the past 20 years, the two most popular designs in the United States have been the extensively coated cylindrical cobalt-chrome (Co-Cr) stem and the proximally coated tapered titanium stem, which in recent years has become the most common. The 10-year survival for both stem types has been over 95% with a distinction made on factors other than stem survival, including thigh pain, stress shielding, complications of insertion, and ease of revision. Conventional wisdom holds that proximally coated titanium stems have less stress shielding, less thigh pain, and a higher quality clinical result. Recent studies, however, including randomised clinical trials have found that the incidence of thigh pain and clinical result is essentially equivalent between the stem types, however, there is a modest advantage in terms of stress shielding for a tapered titanium stem over an extensively coated Co-Cr stem. One study utilising pain drawings did establish that if a Co-Cr cylindrical stem was utilised, superior clinical results in terms of pain score and pain drawings were obtained with a fully coated versus a proximally coated stem. In spite of the lack of a clinically proven advantage in randomised trials, tapered titanium stems have been favored because of the occasional occurrence of substantial stress shielding, the increased clinical observation of thigh pain severe enough to warrant surgical intervention, ease of use of shorter tapered stems that involve removal of less trochanteric bone and less risk of fracture both at the trochanter and the diaphysis due to the shorter, and greater ease of insertion through more limited approaches, especially anterior approaches. When tapered stems are utilised, there may be an advantage to a more rectangular stem-cross section in patients with type C bone. In spite of the numerous clinical advantages of tapered titanium stems, there still remains a role for more extensively coated cylindrical stems in patients that have had prior surgery of the proximal femur, particularly for a hip fracture, which makes proximal fixation, ingrowth, and immediate mechanical stability difficult to assure consistently. Cement fixation should also be considered in these cases. While the marketplace and the clinical evidence strongly support routine use of tapered titanium proximally coated relatively short stems with angled rather than straight proximal lateral geometry in the vast majority of cases, there still remains a role for more extensively coated cylindrical and for specific indications


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 73 - 73
1 Jul 2014
Barrack R
Full Access

In recent years, cementless stems have dominated the North American market. There are several categories of cementless stems, but in the past 20 years, the two most popular designs in the United States have been the extensively coated cylindrical cobalt-chrome (CoCr) stem and the proximally coated tapered titanium stem, which in recent years has become the most common. The 10 year survival for both stem types has been over 95% with a distinction made on factors other than stem survival, including thigh pain, stress shielding, complications of insertion, and ease of revision. Conventional wisdom holds that proximally coated titanium stems have less stress shielding, less thigh pain, and a higher quality clinical result. Recent studies, however, including randomised clinical trials have found that the incidence of thigh pain and clinical result is essentially equivalent between the stem types, however, there is a modest advantage in terms of stress shielding for a tapered titanium stem over an extensively coated CoCr stem. One study utilising pain drawings did establish that if a CoCr cylindrical stem was utilised, superior clinical results in terms of pain score and pain drawings were obtained with a fully coated versus a proximally coated stem. In spite of the lack of a clinically proven advantage in randomised trials, tapered titanium stems have been favored because of the occasional occurrence of substantial stress shielding, the increased clinical observation of thigh pain severe enough to warrant surgical intervention, ease of use of shorter tapered stems that involves removal of less trochanteric bone and less risk of fracture both at the trochanter and the diaphysis due to the shorter, and greater ease of insertion through more limited approaches, especially anterior approaches. When tapered stems are utilised, there may be an advantage to a more rectangular stem-cross section in patients with type C bone. In spite of the numerous clinical advantages of tapered titanium stems, there still remains a role for more extensively coated cylindrical stems in patients that have had prior surgery of the proximal femur, particularly for a hip fracture, which makes proximal fixation, ingrowth, and immediate mechanical stability difficult to assure consistently. Cement fixation should also be considered in these cases. While the market place and the clinical evidence strongly support routine use of tapered titanium proximally coated relatively short stems with angled rather than straight proximal lateral geometry in the vast majority of cases, there still remains a role for more extensively coated cylindrical and for specific indications


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 10 - 10
1 May 2014
Barrack R
Full Access

In recent years, cementless stems have dominated the North American market. There are several categories of cementless stems, but in the past 20 years, the two most popular designs in the United States have been the extensively coated cylindrical cobalt-chrome (Co-Cr) stem and the proximally coated tapered titanium stem, which in recent years has become the most common. The 10 year survival for both stem types has been over 95% with a distinction made on factors other than stem survival, including thigh pain, stress shielding, complications of insertion, and ease of revision. Conventional wisdom holds that proximally coated titanium stems have less stress shielding, less thigh pain, and a higher quality clinical result. Recent studies, however, including randomised clinical trials have found that the incidence of thigh pain and clinical result is essentially equivalent between the stem types, however, there is a modest advantage in terms of stress shielding for a tapered titanium stem over an extensively coated Co-Cr stem. One study utilising pain drawings did establish that if a Co-Cr cylindrical stem was utilised, superior clinical results in terms of pain score and pain drawings were obtained with a fully coated versus a proximally coated stem. In spite of the lack of a clinically proven advantage in randomised trials, tapered titanium stems have been favored because of the occasional occurrence of substantial stress shielding, the increased clinical observation of thigh pain severe enough to warrant surgical intervention, ease of use of shorter tapered stems that involve removal of less trochanteric bone and less risk of fracture both at the trochanter and the diaphysis due to the shorter, and greater ease of insertion through more limited approaches, especially anterior approaches. When tapered stems are utilised, there may be an advantage to a more rectangular stem-cross-section in patients with type C bone. In spite of the numerous clinical advantages of tapered titanium stems, there still remains a role for more extensively coated cylindrical stems in patients that have had prior surgery of the proximal femur, particularly for a hip fracture, which makes proximal fixation, ingrowth, and immediate mechanical stability difficult to assure consistently. Cement fixation should also be considered in these cases. While the marketplace and the clinical evidence strongly support routine use of tapered titanium proximally coated relatively short stems with angled rather than straight proximal lateral geometry in the vast majority of cases, there still remains a role for more extensively coated cylindrical and for specific indications


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 68 - 68
1 May 2016
Talmo C Elsharkawy K Ward D Robbins C Kent S Bierbaum B Bono J
Full Access

INTRODUCTION. Corrosion of modular tapers is increasingly recognized as a source of adverse tissue reaction (ALTR) and revision surgery in total hip arthroplasty (THA). The incidence of corrosion and rate of revision for ALTR may differ among different types of implants. OBJECTIVE. The objective of this study was to determine if a difference exists in rate of THA revision for corrosion and ALTR with tapered broach only stems compared to ream-broach femoral stems. METHODS. We reviewed the results of 3741 primary THA performed over a 5 year period at our institution using 2 different implants by the same manufacturer, a tapered proximally coated cementless titanium stem inserted via a broach only technique (Group A) and dual tapered proximally coated cementless titanium stem inserted via a ream and broach technique (Group B). RESULTS. Of 1567 THA in group A, 964 were combined with a chrome cobalt metal head, while 603 were ceramic. Of 2174 THA in group B, 1302 were metal and 872 were ceramic. Head sizes used were similar between groups. The same polyethylene was used in all THA. At a minimum follow-up of 2 years and average follow-up of 5 years, the overall revision rate for all causes was 3.1% in group A and 1.4% in group B. There were 29 revisions for ALTR due to corrosion of the morse taper junction in group A (3.4%) and 0 in group B. Univariate and multivariate analysis indicated no relationship between revision for corrosion/ALTR and age, gender, stem size, stem offset and head size. A significant relationship was identified between revision and head length, with an increased rate of revision among longer head lengths. There were no revisions for corrosion, ALTR or unexplained pain among patients receiving ceramic heads in either group. CONCLUSION. There was a significant difference in the rate of revision for corrosion and adverse tissue reaction encountered with the use of stem A when compared to stem B. The stem geometry, taper geometry and exact metallurgy of these femoral components likely influences the incidence and severity of taper corrosion, however, more research is required to identify the exact contributions of these factors


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 139 - 139
1 Feb 2020
Soltanmohammadi P Willing R Athwal G
Full Access

Introduction. Stress shielding of bone around the stem components of total shoulder replacement (TSR) implants can result in bone resorption, leading to loosening and failure. Titanium is an ideal biomaterial for implant stems; however, it is much stiffer than bone. Recent advances in additive manufacturing (AM) have enabled the production of parts with complex geometries from titanium alloys, such as hollow or porous stems. The objective of this computational study is to determine if hollow titanium stems can reduce stress shielding at the proximal humerus. We hypothesize that hollow TSR implant stems will reduce stress shielding in comparison with solid stems and the inner wall thickness of the hollow stem will be a design parameter with a direct effect on bone stresses. Methods. Using a previously developed statistical shape and density model (SSDM) of the humerus based on 75 cadaveric shoulders, a simulated average CT image was created. Using MITK-GEM, the cortical and trabecular bones were segmented from this CT image and meshed with quadratic tetrahedral elements. Trabecular bone was modeled as an isotropic and inhomogeneous material, with the Young's modulus defined element-by-element based on the corresponding CT densities. Cortical bone was assumed isotropic with a uniform Young's modulus of 20 GPa. The Poisson's ratio for all bone was 0.3. The distal humerus was fully constrained. Bone stresses were calculated by performing finite element analyses in ABAQUS with a 320 N force and 2 Nm frictional moment applied to the articular surface of the humeral head, based on an in vivo study during 45 degrees of shoulder abduction. Subsequently, the humeral head was resected and reamed to receive solid- and hollow-stemmed implants with identical external geometries but three different inner wall thicknesses (Figure 1). The identical surrounding bone meshes for the intact and reconstructed bones allowed element-by-element stress comparisons. The volume-weighted average changes in cortical and trabecular bone von Mises stresses were calculated, (wrt the intact humerus), as well as the percentage of bone volume experiencing a relative increase or decrease in stress greater than 10%. Results. Results for all four implant designs are summarized (Figure 2). The solid stem resulted in the biggest average change in von Mises stresses (4% decrease in cortical and 6% increase in cancellous bone stress). The solid stem also resulted in the largest volume of bone experiencing a decrease in stress. Comparing the hollow stems, the thinnest shell wall resulted in the smallest changes in cortical bone stress, and the lowest volumes of bone experiencing a decrease in stress. Interestingly, this design caused the most cancellous bone to experience an increase in stress. Discussion. These results suggest a marginal improvement in the bone-implant mechanics of hollow versus solid stems, and that thinner shell walls perform better. That said, the improvements over the solid stem design are minimal. Further increasing the compliance of these stems, e.g. by adding pores, may improve their performance. Future work will focus on optimizing hollow and porous stem designs, and the possibility of leveraging their hollow design for drug delivery. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 4 - 4
1 Apr 2019
Tamura J Asada Y Oota M Matsuda Y
Full Access

Introduction. We have investigated the long-term (minimum follow-up period; 10 years) clinical results of the total hip arthroplasty (THA) using K-MAX HS-3 tapered stem. Materials and Methods. In K-MAX HS-3 THA (Kyocera Medical, Kyoto, Japan), cemented titanium alloy stem and all polyethylene cemented socket are used. This stem has the double tapered symmetrical stem design, allowing the rotational stability and uniform stress distribution. The features of this stem are; 1. Vanadium-free high-strength titanium alloy (Ti-15Mo-5Zr-3Al), 2. Double-tapered design, 3. Smooth surface (Ra 0.4µm), 4. Broad proximal profile, 5. Small collar. Previous type stem, which was made of the same smooth-surface titanium alloy, has the design with cylindrical stem tip, allowing the maximum filling of the femoral canal. Osteolysis at the distal end of the stem had been reported in a few cases in previous type with cylindrical stem tip, probably due to the local stress concentration. Therefore the tapered stem was designed, expecting better clinical results. 157 THAs using HS-3 taper type stem were performed at Kitano Hospital between March 2004 and March 2008. And 101 THAs, followed for more than 10 years, were investigated (follow-up rate; 64.3%). The average age of the patients followed at the operation was 61.7 years and the average follow-up period was 10.9 years. The all-polyethylene socket was fixed by bone cement, and the femoral head material was CoCr (22mm; 5 hips, 26 mm; 96 hips). Results. Two hips were revised, one was due to late infection, and the other due to breakage of the implant in trauma. Japanese orthopaedic association (JOA) score improved from 40 to 86 points. Postoperative complication was three periprosthetic fractures (one femoral shaft fracture and two greater trochanteric fractures) and femoral shaft fracture case was operated. Dislocation was not observed. Socket loosening (Hodgkinson, Type 3, 4) and stem loosening (Harris, definite and probable) were not observed radiographically. Cortical hypertrophy was observed in 7.9%. The survival rate of HS-3 tapered stem was 98% for revision due to any reason and 100% for revision due to aseptic loosening. Discussion. The long-term clinical results of K-MAX HS-3 tapered stem were excellent. The osteolysis at the stem tip was not observed in this type, which was observed in a few cases in previous type. From the X-ray finding, it was suggested that this taperd stem had more uniform stress distribution to the femoral bone than previous type. Moreover, the problems associated with titanium alloy usage were not observed. From the present investigation, good farther long-term results of the tapered titanium stem were expected


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 104 - 104
1 May 2019
Haddad F
Full Access

There has been an evolution in revision hip arthroplasty towards cementless reconstruction. Whilst cemented arthroplasty works well in the primary setting, the difficulty with achieving cement fixation in femoral revisions has led to a move towards removal of cement, where it was present, and the use of ingrowth components. These have included proximally loading or, more commonly, distally fixed stems. We have been through various iterations of these, notably with extensively porous coated cobalt chrome stems and recently with taper-fluted titanium stems. As a result of this, cemented stems have become much less popular in the revision setting. Allied to concerns about fixation and longevity of cemented fixation revision, there were also worries in relation to bone cement implantation syndrome when large cement loads were pressurised into the femoral canal at the time of stem cementation. This was particularly the case with longer stems. Technical measures are available to reduce that risk but the fear is nevertheless there. In spite of this direction of travel and these concerns, there is, however, still a role for cemented stems in revision hip arthroplasty. This role is indeed expanding. First and foremost, the use of cement allows for local antibiotic delivery using a variety of drugs both instilled in the cement at the time of manufacture or added by the surgeon when the cement is mixed. This has advantages when dealing with periprosthetic infection. Thus, cement can be used both as interval spacers but also for definitive fixation when dealing with periprosthetic hip infection. The reconstitution of bone stock is always attractive, particularly in younger patients or those with stove pipe canals. This is achieved well using impaction grafting with cement and is another extremely good use of cement. In the very elderly or those in whom proximal femoral resection is needed at the time of revision surgery, distal fixation with cement provides a good solution for immediate weight bearing and does not have the high a risk of fracture seen with large cementless stems. Cement is also useful in cases of proximal femoral deformity or where cement has been used in a primary arthroplasty previously. We have learnt that if the cement is well-fixed then the bond of cement-to-cement is excellent and therefore retention of the cement mantle and recementation into that previous mantle is a great advantage. This avoids the risks of cement removal and allows for much easier fixation. Stems have been designed specifically to allow this cement-in-cement technique. It can be used most readily with polished tapered stems - tap out a stem, gain access at the time of revision surgery and reinsert it. It is, however, now increasingly used when any cemented stems are removed provided that the cement mantle is well fixed. The existing mantle is either wide enough to accommodate the cement-in-cement revision or can be expanded using manual instruments or ultrasonic tools. The cement interface is then dried and a new stem cemented in place. Whilst the direction of travel in revision hip arthroplasty has been towards cementless fixation, particularly with tapered distally fixed designs, the reality is that there is still a role for cement for its properties of immediate fixation, reduced fracture risk, local antibiotic delivery, impaction grafting and cement-in-cement revision


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 11 - 11
1 Jun 2018
Lombardi A
Full Access

The use of short femoral components in primary total hip arthroplasty (THA) represents an attractive option. Advocates tout bone preservation and ease of use in less invasive surgical approaches. In 2006 we adopted the concept and have had experience with over 5,700 short, tapered, titanium, porous plasma-sprayed stems in patients undergoing primary THA. The plasma-sprayed portion of this stem is similar to the longer, standard length TaperLoc stem, with shortening resulting from a 3 cm reduction in length of the distal portion of the implant. However, the proximal aspect maintains the same flat, tapered wedge proximal geometry as the standard stem. During insertion in some femurs it was noted that distal canal fill occurred preferentially to proximal canal fill. This required distal broaching in order to accommodate a larger stem. In an effort to avoid this clinical situation and to improve the gradual off-loading that is the goal of a tapered geometry, the design was modified in 2011 to reduce the profile of the component. Other modifications include a lower caput-collum-diaphyseal (CCD) angle to enhance horizontal offset restoration without increasing leg length, width sizing from 5–18 mm in 1 mm increments, and polished neck flats to increase range of motion. Undoubtedly, porous plasma sprayed tapered titanium stems are successful in primary THA. Short stems can better accommodate proximal-distal femoral mismatch, particularly in hips with a large metaphysis and a narrow diaphysis, hips with an excessively bowed femur, and hips with severe deformity such as that encountered with developmental dysplasia and post-traumatic arthritis. Short stems violate less femoral bone stock, allowing for more favorable conditions should revision surgery become necessary. The concept of a short stem is appealing to patients, who perceive it as less invasive. In addition, short stems facilitate shorter incision surgery and operative approaches such as the muscle-sparing anterior supine intermuscular. Increased canal fill has been associated with distal cortical hypertrophy. Reducing the distal portion of the stem has reduced the incidence of distal canal fill, and allows for placement of a slightly larger implant


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 147 - 147
1 Feb 2017
McGrory B Hussey D
Full Access

Introduction. Mechanically assisted crevice corrosion (MACC) in metal-on-polyethylene (MOP) total hip arthroplasty (THA) is of concern, but its prevalence, etiology and natural history are incompletely understood. Methods. From January 2003 to December 2012, 1356 consecutive THA surgeries using a titanium stem, cobalt chromium alloy femoral head, highly crosslinked polyethylene and a tantalum or titanium acetabular shell were performed. Patients were followed at 1 year, and 5 year intervals for surveillance, but also seen earlier if they had symptoms. Any patient with osteolysis or unexplained pain underwent exam, radiographs, CBC, ESR and CRP, as well as serum cobalt (Co) and chromium (Cr) level. MARS MRI was performed if the Co level was > 1 ppb. Results. Symptomatic MACC was present in 39/1356 patients (2.9%). Yearly MACC prevalence ranged from 0 % (0/139, 2005) to 9.9 % (16/162, 2009). 22/39 (56%) patients have undergone revision surgery, and 17/39 (44%) have opted for ongoing surveillance. Of the surveillance patients, serial serum metal ion levels appear to increase over time. Time of symptoms is correlated with tissue necrosis at time of revision. Conclusions. The prevalence of MACC in MOP hips is higher in this cross-sectional study than previously reported. The highest prevalence was found in 2009 with this vendor. Based on how common this finding is in symptomatic patients from 2009, we may consider asking asymptomatic patients to obtain baseline serum ion levels. The goal of our ongoing research is to understand how to avoid permanent soft tissue loss from adverse local tissue reactions caused by MACC


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 102 - 102
1 Nov 2015
Haidukewych G
Full Access

The femoral diaphysis presents the best opportunity for fixation during revision THA. Both fully coated cylindrical and modular fluted tapered titanium stems have demonstrated excellent results. Cylindrical stems have demonstrated concerning rates of failure when used in larger, osteopenic canals or in canals with post-isthmal divergent morphologies. Modular stems offer the advantage of separating distal fixation needs from proximal version, leg length, and offset needs via a modular junction. Although early designs demonstrated some breakages at the taper or through thin proximal bodies, newer generation implants have not demonstrated such mechanical concerns. Additionally, the modular junctions do not appear to be having any problems with corrosion. Mid- to long-term data with various designs now support the safety and efficacy of these constructs that can handle a wide variety of challenges during femoral revision. Careful attention to detail is necessary to minimise the risk of subsidence and intra-operative fracture or femoral perforation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 54 - 54
1 Apr 2017
Duncan C
Full Access

Cementless stem fixation is a widely used method of stem revision in North America and elsewhere in the world. There is abundant literature in its support. Most of the reports from 1985 to 2005 related to proximally or extensively porocoated designs, the former falling into disfavor with time because of unpredictable outcomes. With few exceptions (e.g. S-ROM) the modularity of these designs was limited to the head/neck junction. But this generation of designs was associated with some issues such as insertional fractures, limited control of anteversion (and risk of dislocation), limited applicability in the setting of severe bone loss (Paprosky Type 4 osteolysis or Vancouver Type B3 periprosthetic fracture), as well as ongoing concern relating to severe proximal stress shielding. In the past decade we have seen the mounting use of a new design concept: tapered fluted titanium stems (TFTS), which incorporate the advantages of titanium (for less flexural rigidity), conical taper (for vertical taper-lock stability), longitudinal ribs or flutes (for rotational stability), and surface preparation which attracts bone ongrowth for long term fixation. Four consecutive reports from our center have documented the superiority of the TFTS in our hands, with encouraging outcomes even when dealing with severe bone loss or periprosthetic fractures. There is an increasing body of other literature which reports a similar experience. Furthermore, with increasing experience and confidence in this design concept, we now use a monoblock or non-modular design in the majority of cases in which a TFTS is indicated. This circumvents the potential drawbacks of stem modularity, including taper corrosion and taper junction fracture. Our recent report of this concept in 104 cases with a 2-year minimum follow-up supports the use of this concept in many if not most stem revisions. The question remains as to which should be favored? Because of equipoise in the outcomes of the two fundamental stem designs, at least in our hands, clearly the surgeon needs to ask other, more practical questions:. Am I familiar enough with the TFTS technique so as to bypass the potential versatility of the modular stem for the simplicity and potential cost savings of the non-modular?. Is this a case in which modularity will offer me distinct advantages (periprosthetic fracture, and severe bone loss as examples). Should I introduce the nonmodular TFTS to my practice, choosing straightforward cases first; ones in which I would comfortably and with confidence use an extensively porocoated stem?