Advertisement for orthosearch.org.uk
Results 1 - 20 of 88
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 76 - 76
1 Jan 2018
Marsden-Jones D McKenna R Jones C Walter W
Full Access

The pelvis is known to undergo significant movement during Total Hip Replacement (THR). We developed a 4D-tracking device employing an inertial measurement unit (IMU) to track changes in pelvic orientation during THR.

The IMU was mounted on the iliac crest in 39 cases with tracking initiated at the commencement of surgery and digital logging of significant intra-operative milestones (i.e. acetabular impaction). The system was validated by videoing a select number of cases and the 4D model linked in real-time. Data were processed using a custom Java-based infrastructure to calculate roll (left/right) and tilt (flexion/extension).

19 patients underwent direct anterior approach (DAA) and 20 posterior approach (PA). Comparing DAA to PA, at acetabular impaction there was mean pelvic roll seen of 3.7°(range 0.5–10.1°) in the DAA group, and 5.6°(range 0.1–16.2°) in the PA group. Mean tilt in the DAA group was 3.7°(range: 0.2–7.1°) and in the PA group was 1.7°(range: 0.2–4.3°).

Mean BMI in the DAA group was 25.2(range: 18.4–34.2) and 29.1(range: 21.5–42.4). There was no direct correlation between BMI and the amount of roll or tilt recorded for individual patients.

The IMU tracking device provided a useful and real-time method of assessing pelvic orientation during THR via both the DAA and posterior approach. Specific variations in tilt and roll are consistent with previous literature. Significant variation in the pattern of pelvic movement was noted to be dependent on the approach and the position of the patient on the operating table.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_II | Pages 128 - 129
1 Feb 2004
Prem M Aravidan M Mowbray M Newman-Sanders D
Full Access

The diagnosis and subsequent treatment of patients with “Anterior Knee Pain” remains a challenge and an enigma at times. The 4 main parameters, which need to be assessed, are:. Bony anatomy of the PFJ. Cartilage structure within the PFJ. Tracking of the patella with active knee extension. Structure of the soft tissues in the extensor mechanism. While plain radiographs, CT scans and static MRI sans and arthroscopic assessments highlight some of the parameters none of them are comprehensive. The type of MRI scanning used in this study assesses all 4 parameters. The equipment required for resisted quadriceps contraction is inexpensive and readily available. Material and Methods: 70 patients had dynamic MRI scans done over a period of 2 years. The study consisted of 3 parts:. Radiological diagnosis and grading of subluxation if present. Clinical scoring of 26 patients who returned the questionnaires. Oxford, Lysholm and Tegner scores were used and correlated with the radiological scores. Development of a Treatment Algorithm based o the scan results. Conclusion: The Tibial Tubercle to Trochlear Groove Distance” (TTD) appears to be the single most significant parameter determining patellar tracking. Objective radiological assessment is possible under physiological loading, to differentiate tilt, subluxation and chondromalacia. We have proposed an algorithm for the surgical and non-surgical treatment of anterior knee pain. The pain scores did not show a significant correlation with the grading of subluxation


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 433 - 433
1 Nov 2011
Strachan R Iranpour F Konala P Devadesan B Chia S Merican A Amis A
Full Access

Controversy still exists in the literature regarding efficacy and usefulness of CASN in knee arthroplasty. However, obsession with basic alignments and proper correction of mechanical axes fails to recognise the full future potential of CASN which seems to lie in enhanced dynamic assessment. Basic dynamics usually at least includes intraoperative assessment of limb alignments, flexion-extension gap balancing and simple testing through ranges of motion. However our upgraded CASN system (Brainlab) is also capable of enhanced assessment not only including the provision of data on initial to final alignments but also contact point observations. The system can also perform an enhanced ‘Range Of Motion’ (ROM) analysis including observation of epicondylar axis motion, valgus and varus, antero-posterior shifts as well as flexion and extension gaps. Tracking values for both tibiofemoral and patellofemoral motion have also been obtained after performing registration of the prosthetic trochlea. Observations were then made using a set of standardised dynamic tests. Firstly, the lower leg was placed in neutral alignment and the knee put through a flexionextension cycle. Secondly the test was repeated but with the lower leg being placed into varus and internal rotation. The third test was performed with the lower leg in valgus and external rotation. We have been able to carry out these observations in a limited case series of 15 total knee arthroplasties and have found it possible to observe and quantify marked intra-operative variation in the stability characteristics of the implanted joints before corrections have been made and final assessments performed. Indeed contact point observation has found several cases of edge loading before corrections have been made. Also ROM analysis has demonstrated the ability of the system in other cases to observe and then make necessary adjustments of implant positions and ligament balance which alter the amounts of antero-posterior and lateral translations. In this way paradoxical antero-posterior and larger rotational movements have been minimised. Cases where conversion to posterior stabilisation has been necessary have been encountered. Also patellar tracking has been observed during such dynamic tests and appropriate adjustments made to components and soft tissue balancing. Although numbers in this case series are small, it has been possible to begin to observe, classify and quantify patterns of instability intra-operatively using simple stress tests. Such enhanced intra-operative information may in future make it possible to create algorithms for logical adjustments to ligament balance, component sizes, types and positions. In this way CASN becomes a more useful tool


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 9 - 9
23 Apr 2024
Ramlawi AA McClure P Assayag M
Full Access

Introduction

The practice of limb lengthening using intramedullary nails has surged in popularity in recent years. Our study explores the relationship between femur lengthening and overall height gain in adults undergoing cosmetic limb lengthening with telescoping magnetic intramedullary lengthening nails (MILNs).

Materials & Methods

Demographic information, pre- and postoperative radiographic data, and secondary outcomes, such as mechanical angles and sagittal alignment, were analyzed for 42 adult femurs MILNs (PRECICE 2, NuVasive, Inc.). Height was assessed with a digital stadiometer. Limb lengthening was defined as the amount of nail distraction seen on a calibrated weight bearing X-ray at consolidation. mLDFA, mMPTA, MAD, AMA, and femoral sagittal bow were evaluated as secondary outcomes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 17 - 17
1 Dec 2021
Shuttleworth M Vickers O Isaac G Culmer P Williams S Kay R
Full Access

Abstract

Objectives

Dual mobility (DM) hip implants whereby the polyethylene liner is “free-floating” are being used increasingly clinically. The motion of the liner is not well understood and this may provide insight into failure mechanisms; however, there are no published methods on tracking liner motion while testing under clinically relevant conditions. The aim was to develop and evaluate a bespoke inertial tracking system for DM implants that could operate submerged in lubricant without line-of-sight and provide 3D orientation information.

Methods

Trackers (n=5) adhered to DM liners were evaluated using a robotic arm and a six-degree of freedom anatomical hip simulator. Before each set of testing the onboard sensor suites were calibrated to account for steady-state and non-linearity errors. The trackers were subjected to ranges of motion from ±5° to ±25° and cycle frequencies from 0.35Hz to 1.25Hz and the outputs used to find the absolute error at the peak angle for each principle axis. In total each tracker was evaluated for ten unique motion profiles with each sequence lasting 60 cycles.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 78 - 78
1 Dec 2020
Dandois F Taylan O D'hooge J Vandenneucker H Slane L Scheys L
Full Access

In-situ assessment of collateral ligaments strain could be key to improving total knee arthroplasty outcomes by improving the ability of surgeons to properly balance the knee intraoperatively. Ultrasound (US) speckle tracking methods have shown promise in their capability to measure in-situ soft tissue strain in large tendons but prior work has also highlighted the challenges that arise when attempting to translate these approaches to the in-situ assessment of collateral ligaments strain. Therefore, the aim of this project was to develop and validate an US speckle tracking method to specifically assess in-situ strains of both the MCL and LCL. We hypothesize that coefficients of determination (R2) would be above 0.90 with absolute differences below 0.50% strain for the comparison between US-based and the reference strain, with better results expected for the LCL compared with the MCL.

Five cadaveric legs with total knee implants (NH019 2017-02-03) were submitted to a varus (LCL) and valgus (MCL) ramped loading (0 – 40N). Ultrasound radiofrequency (rf) data and reference surface strains data, obtained with 3D digital image correlation (DIC), were collected synchronously. Prior to processing, US data were qualitatively assessed and specimens displaying substantial imaging artefacts were discarded, leaving five LCL and three MCL specimens in the analysis. Ultrasound rf data were processed in Matlab (The MathWorks, Inc., Natick, MA) with a custom-built speckle tracking approach adapted from a method validated on larger tendons and based on normalized cross-correlation. Digital image correlation data were processed with commercial software VIC3D (Correlated Solutions, Inc., Columbia, SC). To optimize speckle tracking, several tracking parameters were tested: kernel and search window size, minimal correlation coefficient and simulated frame rate. Parameters were ranked according to three comparative measures between US- and DIC-based strains: R2, mean absolute error and strains differences at 40N. Parameters with best average rank were considered as optimal.

To quantify the agreement between US- and DIC-based strain of each specimen, the considered metrics were: R2, mean absolute error and strain differences at 40N. The LCL showed a good agreement with a high average R2 (0.97), small average mean absolute difference (0.37%) and similar strains at 40N (DIC = 2.92 ± 0.10%; US = 2.99 ± 1.16%). The US-based speckle tracking method showed worse performance for the MCL with a lower average correlation (0.55). Such an effect has been observed previously and may relate to the difficulty in acquiring sufficient image quality for tracking the MCL compared to the LCL, which likely arises due to structural or mechanical differences; notably MCL is larger, thinner, more wrapped around the bone and stretches less. However, despite these challenges, the MCL tracking still showed small average mean absolute differences (0.44%) and similar strains at 40N (DIC = 1.48 ± 0.06%; US = 1.44 ± 1.89%).

We conclude that the ultrasound speckle tracking method developed is ready to be used as a tool to assess in-situ strains of LCL. Concerning the MCL strain assessment, despite some promising results in terms of strain differences, further work on acquisition could be beneficial to reach similar performance.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 48 - 48
1 Aug 2020
Burns D
Full Access

Participation in a physical therapy program is considered one of the greatest predictors for successful conservative management of common shoulder disorders, however, adherence to standard exercise protocols is often poor (around 50%) and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence and performance of shoulder rehabilitation in the home setting. The goal of this study was to develop and evaluate the potential for performing home shoulder physiotherapy monitoring using a commercial smartwatch. We hypothesize that shoulder physiotherapy exercises can be classified by analyzing the temporal sequence of inertial sensor outputs from a smartwatch worn on the extremity performing the exercise.

Twenty healthy adult subjects with no prior shoulder disorders performed seven exercises from a standard evidence-based rotator cuff physiotherapy protocol: pendulum, abduction, forward elevation, internal/external rotation and trapezius extension with a resistance band, and a weighted bent-over row. Each participant performed 20 repetitions of each exercise bilaterally under the supervision of an orthopaedic surgeon, while 6-axis inertial sensor data was collected at 50 Hz from an Apple Watch. Using the scikit-learn and keras platforms, four supervised learning algorithms were trained to classify the exercises: k-nearest neighbour (k-NN), random forest (RF), support vector machine classifier (SVC), and a deep convolutional recurrent neural network (CRNN). Algorithm performance was evaluated using 5-fold cross-validation stratified first temporally and then by subject.

Categorical classification accuracy was above 94% for all algorithms on the temporally stratified cross validation, with the best performance achieved by the CRNN algorithm (99.4± 0.2%). The subject stratified cross validation, which evaluated classifier performance on unseen subjects, yielded lower accuracies scores again with CRNN performing best (88.9 ± 1.6%).

This proof-of concept study demonstrates the feasibility of a smartwatch device and machine learning approach to more easily monitor and assess the at-home adherence of shoulder physiotherapy exercise protocols. Future work will focus on translation of this technology to the clinical setting and evaluating exercise classification in shoulder disorder populations.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 50 - 50
1 May 2016
Bravo D Swensen S Lajam C
Full Access

Introduction

The Center for Medicare Services (CMS) recently proposed its phase 3 “Quality metrics” which include a section on patient engagement. CMS uses a fitness monitor as an example of an acceptable way for patients to contribute to the health record. Wearable technology allows measurement of activity, blood glucose, heart rate, sleep, and other health metrics, all of which can be useful in the management of patients in the orthopaedic practice. The purpose of this study is to thoroughly review existing fitness devices; and evaluate their potential uses in orthopaedic practice.

Methods

Several fitness devices exist; we focused on the top 27 based on popularity mentioned in reputable tech review articles. Features of each device were reviewed including type, specifications, interfaces, measurable outcomes (HR, steps, distance, sleep, weight, calorie intake), cost to the patient, barriers to compliance and strengths. Ultimately all these factors were taken into consideration to look into potential uses for orthopaedic surgery. The orthopedic applications of these devices were reviewed. Nonsurgical management applications were: compliance with physiotherapy, distance walked and stairs completed, and compliance with activity restrictions. Preoperative optimization included detection of sleep apnea, blood glucose monitoring, preoperative weight, and preoperative activity level. Postoperative outcomes included postoperative activity level, stairs, and distance walked.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 94 - 94
1 Aug 2013
Belvedere C Ensini A Leardini A Dedda V Cenni F Feliciangeli A De La Barrera JM Giannini S
Full Access

INTRODUCTION

In computer-aided total knee arthroplasty (TKA), surgical navigation systems (SNS) allow accurate tibio-femoral joint (TFJ) prosthesis implantation only. Unfortunately, TKA alters also normal patello-femoral joint (PFJ) functioning. Particularly, without patellar resurfacing, PFJ kinematics is influenced by TFJ implantation; with resurfacing, this is further affected by patellar implantation. Patellar resurfacing is performed only by visual inspections and a simple calliper, i.e. without computer assistance.

Patellar resurfacing and motion via patient-specific bone morphology had been assessed successfully in-vitro and in-vivo in pilot studies aimed at including these evaluations in traditional navigated TKA.

The aim of this study was to report the current experiences in-vivo in two patient cohorts during TKA with patellar resurfacing.

MATERIALS AND METHODS

Twenty patients with knee gonarthrosis were divided in two cohorts of ten subjects each and implanted with as many fixed-bearing posterior-stabilised prostheses (NRG® and Triathlon®, Stryker®-Orthopaedics, Mahwah, NJ-USA) with patellar resurfacing. Fifteen patients were implanted; five patients of the Triathlon cohort are awaiting hospital admission. TKAs were performed using two SNS (Stryker®-Leibinger, Freiburg-Germany). In addition to the traditional knee SNS (KSNS), the novel procedure implies the use of the patellar SNS (PSNS) equipped with a specially-designed patellar tracker.

Standard navigated procedures for intact TFJ survey were performed using KSNS. These were performed also with PSNS together intact PFJ survey. Standard navigated procedures for TFJ implantation were performed using KSNS. During patellar resurfacing, the patellar cutting jig was fixed at the desired position with a plane probe into the saw-blade slot; PSNS captured tracker data to calculate bone cut level/orientation. After sawing, resection accuracy was assessed using a plane probe. TFJ/PFJ kinematics were captured with all three trial components in place for possible adjustments, and after final component cementing. A calliper and pre/post-TKA X-rays were used to check for patellar thickness/alignment.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 14 - 14
1 Dec 2017
Pflugi S Lerch T Vasireddy R Boemke N Tannast M Ecker TM Siebenrock K Zheng G
Full Access

Purpose

To validate a small, easy to use and cost-effective augmented marker-based hybrid navigation system for peri-acetabular osteotomy [PAO] surgery.

Methods

A cadaver study including 3 pelvises (6 hip joints) undergoing navigated PAO was performed. Inclination and anteversion of two navigation systems for PAO were compared during acetabular reorientation. The hybrid system consists of a tracking unit which is placed on the patient's pelvis and an augmented marker which is attached to the patient's acetabular fragment. The tracking unit sends a video stream of the augmented marker to the host computer. Simultaneously, the augmented marker sends orientation output from an integrated inertial measurement unit (IMU) to the host computer. The host computer then computes the pose of the augmented marker and uses it (if visible) to compute acetabular orientation. If the marker is not visible, the output from the IMU is used to update the orientation. The second system served as ground truth and is a previously developed and validated optical tracking-based navigation system.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 52 - 52
1 Aug 2013
Ren H Liu W Song S
Full Access

Surgical navigation systems enable surgeons to carry out surgical interventions more accurately and less invasively, by tracking the surgical instruments inside human body with respect to the target anatomy. Currently, optical tracking (OPT) is the gold standard in surgical instrument tracking because of its sub-millimeter accuracy, but is constrained by direct line of sight (LOS) between camera sensors and active or passive markers. Electromagnetic tracking (EMT) is an alternative without the requirement of LOS, but subject to environmental ferromagnetic distortion. An intuitive idea is to integrate respective strengths of them to overcome respective weakness and we aim to develop a tightly-coupled method emphasising the interactive coupled sensor fusion from magnetic and optical tracking data. In order to get real-time position and orientation of surgical instruments in the surgical field, we developed a new tracking system, which is aiming to overcome the constraints of line-of-sight and paired-point interference in surgical environment. The primary contribution of this study is that the LOS and point correspondence problems can be mitigated using the initial measurements of EMT, and in turn the OPT result can provide initial value for non-linear iterative solver of EMT sensing module.

We developed an integrated optical and electromagnetic tracker comprised of custom multiple infrared cameras, optical marker, field generator and sensing coils, because the current commercial optical or magnetic tracker typically consists of unchangeable lower level proprietary hardware and firmware. For the instrument-affixed markers, the relative pose between passive optical markers and magnetic coils is calibrated. The pose of magnetic sensing coils calculated by electromagnetic sensing module, can speed up the extraction of fiducial points and the point correspondences due to the reduced search space. Moreover, the magnetic tracking can compensate the missing information when the optical markers are temporarily occluded. For magnetic sensing subsystem comprised of 3-axis transmitters and 3-axis receiving coils, the objective function for nonlinear pose estimator is given by the summation of the square difference between the measured sensing data and theoretical data from the dipole model. Non-linear optimisation is computational intensive and requires initial pose estimation value. Traditionally, the initial value is calculated by equation-based algorithm, which is sensitive to noise. Instead, we get the initial value from the measurement of optical tracking subsystem. The real-time integrated tracking system was validated to have tracking errors about 0.87mm. The proposed interactive and tightly coupled sensor-fusion of magnetic-optical tracking method is efficient and applicable for both general surgeries as well as intracorporeal surgeries.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 42 - 42
1 May 2013
Stulberg S
Full Access

Navigation has been felt to play a role in a number of THA issues. These issues include: 1) Instability-Dislocation; 2) Leg Length discrepancy; 3) Impingement and its impact on range of motion and wear; 3) gait mechanics; and 4) less invasive surgery. Navigation requires that anatomic landmarks be accurately identified. This can be done using images obtained either pre-operatively or intra-operatively (image-based navigation) or using intra-operative techniques for registering the relevant bony anatomy (image-free). The suggested advantages of imaged-based navigation are that is potentially very accurate, makes registering bone landmarks relatively easy and provides information about relevant anatomic landmarks that are not visible during surgery. The disadvantages of image-based navigation are that the acquisition of pre-operative imaging may be inconvenient or cumbersome, the imaging may be associated with increased radiation exposure, the imaging may be associated with additional costs and the pre-operative planning carried out on the imaging may be elaborate and time consuming. The advantages of image-free navigation are that no special pre-operative planning is required, no special imaging is necessary and the intra-operative workflow is consistent with the routine performance of a THA. However, image free registration techniques may be unreliable or inaccurate and the information obtained with image-free registration techniques is limited.

When surgeons proficient in the technique perform image free navigation, positioning of the acetabular component is more accurate and consistent than that achieved using manual techniques. However, this increased accuracy has not been associated with a reduction in hip dislocations and has not had a measurable impact on short-term clinical outcomes. However, navigation is an accurate measurement tool that can be used to validate other computer-based technologies (e.g. patient specific guides). Navigation is also essential to the performance of robotic hip surgery. It is in this latter capacity that navigation may prove most useful to the hip surgeon.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1637 - 1640
1 Dec 2012
Clark DA Upadhyay N Gillespie G Wakeley C Eldridge JD

Ensuring correct rotation of the femoral component is a challenging aspect of patellofemoral replacement surgery. Rotation equal to the epicondylar axis or marginally more external rotation is acceptable. Internal rotation is associated with poor outcomes. This paper comprises two studies evaluating the use of the medial malleolus as a landmark to guide rotation.

We used 100 lower-leg anteroposterior radiographs to evaluate the reliability of the medial malleolus as a landmark. Assessment was made of the angle between the tibial shaft and a line from the intramedullary rod entry site to the medial malleolus. The femoral cut was made in ten cadaver knees using the inferior tip of the medial malleolus as a landmark for rotation. Rotation of the cut relative to the anatomical epicondylar axis was assessed using CT. The study of radiographs found the position of the medial malleolus relative to the tibial axis is consistent. Using the inferior tip of the medial malleolus in the cadaver study produced a mean external rotation of 1.6° (0.1° to 3.7°) from the anatomical epicondylar axis. Using the inferior tip of the medial malleolus to guide the femoral cutting jig avoids internal rotation and introduces an acceptable amount of external rotation of the femoral component.


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 250 - 250
1 Nov 2002
Pal D
Full Access

Introduction: Patella maltracking is dependent on multifactorial reasons. We have been able to identify one of major and important factor being the rotational alignment of the femoral component. The other subtle variable factors that have a cumulative effect on the tracking of the patella is recognized, which is not the major thrust this study.

Methods and Materials: This is a prospective study on a total of 200 TKR. The first subset of 100 done by the same surgeon and same type of prosthesis and the same sequence of all femoral cuts followed by the tibial cut.

Thus, the rotation of the femoral component was referenced from the posterior condyles.

The second subset of 100 cases, the distal femoral cut was followed by the tibial resection. The susequent femoral resection was referenced from the tibial cut. Thus the rotation of the femoral component was dependent on the tibial axis, and not on the posterior femoral condyles, which in deficient condyles can lead to a significant rotational error.

Conclusion: In the first subset the incidence of lateral release were 3% and 10% asymptomatic patellar tilt.

In the second subset, where the femoral rotation was referenced from the tibial axis, excluding the severe valgus knees, the incidence of lateral release was 0% with asymptomatic patellar tilt of 6%. since all other factors were unchanged i.e. patella replacement, rotation of the tibial prosthesis, same prosthesis, the single variable factor being the femoral rotation leads us to conclude that femoral rotation is a major in appropriate patellar tracking. As a corollary ‘Patellar tracking is the index of orientation, sizing of all components of the prosthesis and soft tissue balance’.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 25 - 25
1 Aug 2013
Lugez E Pichora D Akl S Ellis R
Full Access

Recently, electromagnetic tracking for surgical procedures has gained popularity due to its small sensor size and the absence of line-of-sight restrictions. However, EM trackers are susceptible to measurement noise. Indeed, depending on the environment, measurement uncertainties may vary considerably. Therefore, it is important to characterise electromagnetic measurement systems when used in a fluoroscopy setting. The purpose of our study is to assess decoupled static electromagnetic measurement errors in position and orientation, without adding potential interference, in the presence of fluoroscopic imaging equipment.

Using an Aurora electromagnetic tracking system (Northern Digital, Waterloo, Canada), 5 degrees of freedom measurements were collected in a working space located midway between the source and the receiver of a flat-panel 3D fluoroscope (Innova 4100, GE Healthcare, Buc, France) emitting X-rays. In addition, to determine potential EM distortion from X-rays, electromagnetic measurement accuracies, as a function of position, were compared before, during, and after X-ray emissions. To decouple position and orientation errors, two scaffold devices were designed. Their centre was placed approximately at X = −50, Y = 0, and Z = −300 mm in the EM tracker's global coordinate system. First the positioning scaffold was used to assess the position and orientation measurement uncertainties as a function of position. Next, the orienting scaffold was used to assess the position and orientation measurement uncertainties as a function of orientation. Then, a least-squares method was employed to register the path position measurements to the known geometry of the scaffolds. As a result, the position accuracy was defined as the Euclidean distance between the registered and the ground truth positions. Finally, the orientation accuracy was defined as the difference between two direct angles: the angle between two measured consecutive paths, and the angle of the corresponding ground truth.

When translating the sensor using the positioning scaffold, the resulting position accuracy was characterised by a mean of 3.2 mm. Similarly, when rotating the sensor using the orienting scaffold, the resulting orientation accuracy was characterised by a mean of 1.7 deg. As for the “cross-displacement” errors, the orientation accuracy as a function of position had a mean of 1.8 deg. Likewise, the position as a function of orientation had a mean of 4.0 mm. Position and orientation accuracies – as a function of position, before, during, and after emission of X-rays – indicate that there was no significant interference by the presence of an X-ray beam on the EM measurements.

This work provides evidence that placing the EM system into X-ray beams does not affect EM measurement accuracies. Nevertheless, the fluoroscope itself significantly increases the EM measurement errors. Careful analysis of the EM measurement distribution errors suggests that associated uncertainties are predictable and preventable. In essence, EM tracking is promising for orthopedic procedures that may require the use of a fluoroscope.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 272 - 272
1 Mar 2013
Murphy W Steppacher S Kowal JH Murphy S
Full Access

Introduction

Half of all acetabular components placed using conventional methods are malpositioned1. The HipSextant™ Navigation System (Surgical Planning Associates, Boston, MA) is a mechanical navigation system, adjusted on a patient-specific basis, designed to achieve appropriate cup alignment as simply and rapidly as possible. The current study assesses the surgeon's ability to register and track the pelvis and align the cup using the system.

Methods

A bioskills model pelvis (Pacific Research Laboratories, Inc., Vashon, WA) was prepared by placing screws to mark the anterior pelvic plane points and by inserting a long cup alignment pin, simulating a cup insertion handle, into the acetabulum. The bone model was then scanned using CT. The HipSextantTM Navigation System Planning Application was then used to plan the use of the HipSextant for the surgery. This is accomplished by creating a 3D model, designating the AP plane (marked by the screws), and then determining the HipSextant docking points. One of these three points is behind the posterior wall of the acetabulum (the basepoint). The second of these three points is on the lateral aspect of the anterior superior iliac spine. The third point, the landing point, is located on the surface of the ilium and equally distant from the other two points (Figure 1). The two protractors on the HipSextant planning application were then adjusted to be parallel with the cup alignment pin on the bone model.

A surgeon and assistant were then asked to dock the HipSextant on the bone model and to visually align the direction indicator to be parallel with the cup alignment pin. The two protractor angles on the instrument were recorded. This allowed for calculation of error in operative anteversion and operative inclination between the plan and the actual alignment that was accomplished. Four pairs of surgeon and assistant each performed the docking and alignment procedure 10 times for a total of 40 measurements.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 23 - 23
1 Jan 2016
Haider H Al-Shawi I Barrera OA Pinto A Shaya K Weisenburger J Garvin K
Full Access

Introduction

Computer aided surgery aims to improve surgical outcomes with computer guidance. Navigated Freehand bone Cutting (NFC) takes this further by eliminating the need for cumbersome mechanical jigs, while decreasing cutting time and complexity. To reduce the footprint of the NFC tracking system (currently NDI Polaris) we designed and implemented “On-Tool Tracking” (OTT), a novel miniaturized tracking system that mounts onto the cutting instruments (Fig. 1). This study investigates the accuracy of the 3D-measurements of the OTT system.

Materials and Methods

OTT was designed using off-the-shelf components to communicate as a wireless device. OTT consists of the following:

Stereo camera rig (each camera transmits images to the PC for processing at 30fps);

pico-projector (presents visual information to the user);

power-tool motor controller (stops the motor if the user deviates from the desired plan); and

touch-screen user interface.

OTT communicates with a main PC using four wireless modules, based on three different technologies: Wi-Fi, Xbee, and UWB-USB.

OTT was secured on the upper actuator of a 5-axis Materials Testing Station (MTS-Systems), while the tracked, active wireless reference frame (RF) was locked in the lower actuator(s) (Fig. 2). The origin of OTT's camera system was aligned with the main vertical axis of the MTS and the RF origin set perpendicular to the cameras, with its origin coinciding with the same main vertical axis.

Using the MTS readings as reference (accuracy: 0.01mm/0.01º) for comparison, OTT software acquired multiple static measurements of the camera-rig vs. the RF pose at each location. X-translations and roll-angles were actuated by the MTS hydraulics; pitch and Y-translation were applied manually, while yaw was kept constant (0º).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 294 - 294
1 Jul 2014
Williams R Salimi N Leeke G Bridson R Grover L
Full Access

Summary Statement

Calcium phosphate (CaP) particles have attracted great interest as transfection reagents, yet little is known about their mechanism of internalisation. We report live cell time-course tracking of CaP particles during internalisation and the influence of Ca:P ratio on transfection efficiency.

Introduction

Relatively recent work has seen calcium phosphate (CaP) salts used for the delivery of biological materials into cells in the form of peptides, polymers and DNA sequences. Calcium phosphate salts have a critical safety advantage over other vectors such as viruses in that they pose no risk of pathogenicity due to mutation and show no apparent cytotoxicity. Previous work within the group showed that Ca:P ratio influenced the transfection efficiency, but the fate of the particles on internalisation is yet unknown. The difficulty in tracking the particles can be related to the visual similarity to granulation within the cells. Using a surface modification method that enables the fluorescent labeling of silicon-substituted hydroxyapatite (SiHA) particles, we have tracked the internalisation of the particles to understand their mechanism of entry and how particle composition may influence transfection efficiency.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 51 - 51
1 Oct 2012
Claasen G Martin P Picard F
Full Access

Over the past fifteen years, computer-assisted surgery systems have been more commonly used, especially in joint arthroplasty. They allow a greater accuracy and precision in surgical procedures and thus should improve outcomes and long term results.

New instruments such as guided handheld tools have been recently developed to ultimately eliminate the need for drilling/cutting or milling guides.

To make sure that the handheld tool cuts and/or drills in the desired plane, it has to be servo-controlled. For this purpose, the tool joints are actuated by computer-controlled motors. A tracking system gives the tool position and orientation and a computer calculates the corrections for the motors to keep the tool in the desired plane.

For this servo-control, a very fast tracking system would be necessary. It should be fast enough to follow human motion. Current optical tracking systems used for computer-assisted surgery have a bandwidth of about 10–60 Hz [3]. For servo-control, a bandwidth of about 200–300 Hz would be required to be faster than human reaction; the latency of the system should also be small, about 2–3 ms. Optical tracking systems with a higher bandwidth exist but are too expensive for applications in surgery; besides the latency – due to the complex computer vision treatment involved – is too big.

We have developed a hybrid tracking system consisting of two cameras pointed at the operating field and a sensor unit which can be attached to a handheld tool.

The sensor unit is made up of an inertial measuring unit (IMU) and numerous optical markers. The data from the IMU (three gyroscopes and three accelerometers placed such that their measurement axes are perpendicular to each other) and the marker images from the cameras looking at the optical markers are fed to a data fusion algorithm. This algorithm calculates the position and the orientation of any handheld tool. It can do so at the higher of the two sensor sample rates which is the IMU sample rate in our case.

Our experimental setup consists of an ADIS 16355 IMU which runs at a sample rate of 250 Hz and a pair of stereo cameras which are sampled at 16.7 Hz. The data collected from these sensors are processed offline by the data fusion algorithm. To compare the results of our hybrid system to those of a purely optical tracking system, we use only the marker image data to recalculate the sensor unit's position by triangulation.

The experiment we conducted was a fast motion in a horizontal direction starting from a rest position. The sensor unit position was calculated by the hybrid system and by the optical tracking system using the experimental data. The fast motion started right after the optical sample at t1 and the hybrid system detects it at once. The optical tracking system, on the other hand, only sees the motion at the next optical sample time t2.

These results show that our hybrid system is able to follow a fast motion of the sensor unit whereas a purely optical tracking system is not.

The proposed hybrid tracking system calculates position and orientation of any handheld tool at a high frequency of 250 Hz and thus makes it possible to servo-control the tool to keep it in the desired plane.

Several similar systems fusing optical and inertial data have been described in the literature. They all use processed optical data, i.e. 3D marker positions. Our algorithm uses raw image data to considerably reduce computation time. This hybrid tracking system can be used with any handheld tool developed to substitute existing drilling, cutting or milling instruments used in orthopaedic surgery and particularly in arthroplasty.

The sensor unit can be easily implemented into an existing optical tracking system. For the surgeon, the only change is an additional small inertial sensor besides the optical markers already attached to the tool.

The authors would like to thank the AXA Research Fund for funding G.C. Claasen's work with a doctoral grant and Guillaume Picard for his contributions to the experimental setup.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 325 - 325
1 Jul 2008
James PJ May PA Tarpey WG Blyth M Stother IG
Full Access

Aim: The aim of the study was to assess the impact of a self aligning unidirectional mobile bearing TKR on lateral patella release rates within a knee system using a common femoral component for both the fixed and mobile variants.

Methods and Results: A total of 357 patients undergoing TKR were randomly allocated to receive either a Mobile Bearing (181 knees) or a Fixed Bearing (176 knees) PSTKR. Further sub-randomisation into patella resurfacing or retention was performed for both designs. The need for lateral patella release was assessed during surgery.

The lateral release rate was similar for fixed bearing (9%) and mobile bearing (9%) implants (p=0.95). Patella resurfacing resulted in lower lateral release rates when compared to patella retention (5.5% vs 13.5%; p=0.012). This difference was most marked in the mobile bearing group where the lateral release rate was 16% with patella retention compared to 3% with patella resurfacing (p=0.009).

Conclusion: The addition of a rotating platform tibial component has had no impact on the lateral release rate in this study. Optimising patella geometry by patella resurfacing appears more important than tibial bearing deisgn per se. The combination of a mobile bearing design and patella resurfacing appears the optimise patello-femoral tracking.