Advertisement for orthosearch.org.uk
Results 1 - 20 of 43
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 839 - 842
1 Aug 2023
Jenkins PJ Duckworth AD

Shoulder injury related to vaccine administration (SIRVA) is a prolonged episode of shoulder dysfunction that commences within 24 to 48 hours of a vaccination. Symptoms include a combination of shoulder pain, stiffness, and weakness. There has been a recent rapid increase in reported cases of SIRVA within the literature, particularly in adults, and is likely related to the mass vaccination programmes associated with COVID-19 and influenza. The pathophysiology is not certain, but placement of the vaccination in the subdeltoid bursa or other pericapsular tissue has been suggested to result in an inflammatory capsular process. It has been hypothesized that this is associated with a vaccine injection site that is “too high” and predisposes to the development of SIRVA. Nerve conduction studies are routinely normal, but further imaging can reveal deep-deltoid collections, rotator cuff tendinopathy and tears, or subacromial subdeltoid bursitis. However, all of these are common findings within a general asymptomatic population. Medicolegal claims in the UK, based on an incorrect injection site, are unlikely to meet the legal threshold to determine liability. Cite this article: Bone Joint J 2023;105-B(8):839–842


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_III | Pages 303 - 303
1 Sep 2005
Edwards C Hill P Scammell B Bayston R
Full Access

Introduction and Aims: A phenotypic and proteomic approach has identified novel targets for the development of a DNA vaccine to prevent Staphylococcus aureus infection in orthopaedics. Approximately 1% of joint replacement operations are complicated by infection. Thirty percent of these infections are due to S.aureus, which is often difficult to treat because of antibiotic resistance. As treatment of these infections is challenging, prevention with a vaccine is a very attractive option. Method: To infect a joint replacement, bacteria must first adhere to its surface. This adherence is mediated by specific adhesion proteins; the expression of which is controlled by virulence regulator genes within the bacterial cell. A DNA vaccine is being developed which targets this regulatory apparatus, thus preventing bacterial adhesion, allowing the immune system to rapidly clear any potential S.aureus infection. Results: Mutations of the agr,sar and sae virulence regulator genes have been made. Their properties have been explored using a flow cell system, which uses a scanning confocal laser microscope and image analysis software to accurately provide quantitative data in real-time of biofilm formation. We have shown that the sae mutant does not form biofilm in the same was as wild-type S.aureus. We have also shown that it does not adhere to steel as well as its wild-type counterpart. Conclusion: For such a dramatic difference in biofilm forming properties to be evident, there must be a difference in the adhesion proteins produced by the wild-type and the mutant bacteria. Gel-electrophoresis has compared protein expression of sae mutant and wild-type bacteria and identified differences. Those proteins which are not expressed in the non-biofilm-forming mutant are sequenced and from the protein sequences, DNA sequences are identified that will form part of the candidate DNA vaccine


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 59 - 60
1 Mar 2010
Edis* E Scammell B Bayston R
Full Access

Prosthetic joint infection (PJI) is an increasing problem and management commonly involves prosthesis removal with serious consequences. Biofilm-forming staphylococci are the most common causative organisms with Staphylococcus aureus being most virulent and methicillin-resistant Staphylococcus aureus (MRSA) more than doubling the infection mortality rate. Bacterial adhesion is an essential primary event in biofilm formation and infection establishment. The development of a novel combination vaccine programme to prevent staphylococcal PJI by directing antibody against factors involved in adhesion and biofilm formation, and investigation of S. aureus binding-domains as potential vaccine components for adhesion inhibition is described. Selected target antigens included the S. aureus fibronectin-binding protein (FnBP) and iron-regulated surface determinant (IsdA), which have been shown to be important for infection establishment and predominantly bind to host fibronectin and fibrinogen respectively. Escherichia coli clones harbouring recombinant S. aureus binding-domain DNA sequences were used for expression and purification of antigen domains. In vitro antibody evaluation determined whether immune inhibition of bacteria - ligand binding can significantly impact on attachment to plasma-conditioned biomaterial (in presence of other bacterial ligands). Adhesion of homologous and heterologous (MRSA PJI isolate) S. aureus to plasma-conditioned steel was significantly reduced (approximately 50 percent average reduction, p < 0.0001) when pre-exposed to anti-rFnBP-A antiserum (with pre-immune serum control) that was 50-fold more dilute than the actual titre from immunisation. Inhibition was related to ligand presence but not staphylococcal Protein A, and reduced adhesion was not observed with the mutant strain, indicating specific inhibitory antibody involvement, and demonstrating for the first time the potential of rFnBP-A for prevention of S. aureus PJI. Adhesion-inhibitory activity was also observed with a purified IgG-fraction of rIsdA antiserum but this activity appeared to be masked by non-IsdA - related interactions when non-IgG - purified antiserum was assessed


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_13 | Pages 16 - 16
1 Sep 2014
Obrien M Firth G Ramguthy Y Robertson A
Full Access

Introduction. A previous study in South Africa showed the prevalence of HIV related osteo-articular sepsis in children to be around 20% with a high prevalence of Streptococcus pneumoniae (38%) in HIV positive patients. This initial study was conducted at the same time that the polyvalent S pneumoniae vaccine was introduced to the EPI in South Africa (2009). The aim of the current study was to review the epidemiology of osteo-articular infections at two hospitals after the introduction of this vaccine. Methods. A retrospective review of patients presenting to two hospitals, between July 2009 and January 2013, with acute osteo-articular sepsis and pus at arthrotomy. The NHLS laboratory results were reviewed for microscopy, culture and sensitivity as well as white cell count (WCC), C reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Results. A total of 100 cases of acute osteo-articular sepsis were identified during this period. The prevalence of HIV was 15%. The most common bacterial isolate was Staphylococcus aureus (22%). There were no Streptococcus pneumoniae isolates grown in either of the two groups. There was no difference in the WCC, CRP and ESR between the HIV negative and positive groups. Conclusion. We have seen a dramatic shift in the bacteriology in paediatric patients with osteo-articular sepsis since the original study in 2009. The incidence of HIV in our study population has declined. This may be due to the introduction of mother to child transmission programmes and increased use of anti-retrovirals. Staphylococcus aureus is now the most common isolated organism in patients with osteo-articular sepsis, regardless of HIV status. The empiric antibiotic therapy of choice in paediatric patients with osteo-articular sepsis remains Cloxacillin. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 291 - 291
1 May 2009
Edis E Scammell B Bayston R
Full Access

Background: Prosthetic joint infection (PJI) is most commonly caused by skin-derived, biofilm-forming staphylococci, with Staphylococcus aureus being most virulent and MRSA becoming a substantial problem. Cephaloporins are almost universally used as prophylaxis against PJI, yet Methicillin - resistant S aureus (MRSA) is becoming increasingly common in hospitals, nursing homes and now in the community. Such strains are not susceptible to cephalorsporins or to a range of other antimicrobials. In view of this increasing antibiotic resistance, an alternative approach to preventing S. aureus PJI is needed, and we propose that vaccination is a promising approach. Having regard to the distinct pathogenesis of PJI, this must target key events in infection establishment, such as adhesion to the implant, via the plasma conditioning film, mediated by bacterial binding proteins. It must also have the potential to protect against all S. aureus regardless of antibiotic resistance profile. Fibronectin-binding protein-A (FnBP-A) is one example, but the potential of FnBP-A as a PJI vaccine candidate has not been thoroughly investigated and data in previous literature are contradictory. Methods: Here, polyclonal rabbit antibody against recombinant(r) FnBP-A binding domain was produced and investigated for the first time for activity against S. aureus adhesion to rabbit plasma-conditioned steel coupons in-vitro. Results: The adhesion of homologous S. aureus 8325-4 (fnbA+, fnbB+), and a heterologous MRSA arthroplasty isolate was significantly (p < 0.05) reduced when pre-exposed to anti-FnBP-A antiserum (un-purified and IgG-purified), compared to pre-exposure with pre-immune serum. This was not observed with mutant strain S. aureus DU5883 (fnbA?, fnbB?), indicating the involvement of FnBP-A – specific inhibitory antibody (IgG). Results clearly demonstrate the potential of rFnBP-A binding domain as a vaccine antigen for prevention of PJI and merit further investigation. The implications of this are that vaccination using this peptide might be expected to protect patients about to undergo elective arthroplasty from infection with S aureus whatever its antibiotic susceptibility, so offering a realistic solution to the problem of increasing resistance


Orthopaedic Proceedings
Vol. 85-B, Issue SUPP_I | Pages 3 - 3
1 Jan 2003
Aladin A Nagar S Bayston R Scammell B
Full Access

Most infections in arthroplasty are caused by staphylococci, about half being due to S. aureus. One of the most worrying aspects of this organism, and particularly of MRSA, is increasing multiple drug resistance, so that antimicrobial prophylaxis is probably already compromised. Vaccination offers a novel approach to overcome this. Detailed consideration of the pathogenesis of prosthesis–related infection indicates that a) prosthetic material rapidly becomes coated after implantation with plasma–derived conditioning film, and b) attachment of the bacteria to the conditioning film, by means of specific bacterial surface binding proteins, is an essential primary event. We hypothesise that antibodies to these binding proteins will block bacterial adhesion to the prosthesis, so reducing the incidence of infection. The aim of this research was to determine the effect of specific antibodies to two binding proteins (fibronectin - and fibrinogen–binding proteins, Fnbp and Fgbp respectively) on bacterial adherence to orthopaedic biomaterials coated with plasma conditioning film.

Antibodies to recombinant sequences of Fnbp and Fgbp were raised in rabbits. A strain of S. aureus bearing a genetically inserted fluorescent reporter (GFP) was used. Orthopaedic biomaterials (steel, titanium and PMMA) were coated with FFP–derived conditioning film, placed in a specially–designed flow cell and exposed to a flow of S. aureus for 3h. Images were captured every 15min and analysed for adherent bacteria using image analysis software. The experiment was repeated in the presence of the antibodies and the results compared.

Each antibody reduced the number of bacteria binding to all three materials by greater than 50%. Combining the two antibodies gave similar results to those when they were used individually.

These preliminary results suggest that while further research is required, vaccination aimed at blocking bacterial attachment to conditioning film on implanted prostheses might reduce the incidence of S. aureus infection in arthroplasty. If so, this would apply even to MRSA. Questions remaining to be addressed include the clinical relevance of a 50% reduction in attachment, and future research will attempt to link this to a reduction in infection.


The Bone & Joint Journal
Vol. 104-B, Issue 12 | Pages 1362 - 1368
1 Dec 2022
Rashid F Mahmood A Hawkes DH Harrison WJ

Aims. Prior to the availability of vaccines, mortality for hip fracture patients with concomitant COVID-19 infection was three times higher than pre-pandemic rates. The primary aim of this study was to determine the 30-day mortality rate of hip fracture patients in the post-vaccine era. Methods. A multicentre observational study was carried out at 19 NHS Trusts in England. The study period for the data collection was 1 February 2021 until 28 February 2022, with mortality tracing until 28 March 2022. Data collection included demographic details, data points to calculate the Nottingham Hip Fracture Score, COVID-19 status, 30-day mortality, and vaccination status. Results. A total of 337 patients tested positive for COVID-19. The overall 30-day mortality in these patients was 7.7%: 5.5% in vaccinated patients and 21.7% in unvaccinated patients. There was no significant difference between post-vaccine mortality compared with pre-pandemic 2019 controls (7.7% vs 5.0%; p = 0.068). Independent risk factors for mortality included unvaccinated status, Abbreviated Mental Test Score ≤ 6, male sex, age > 80 years, and time to theatre > 36 hours, in decreasing order of effect size. Conclusion. The vaccination programme has reduced 30-day mortality rates in hip fracture patients with concomitant COVID-19 infection to a level similar to pre-pandemic. Mortality for unvaccinated patients remained high. Cite this article: Bone Joint J 2022;104-B(12):1362–1368


Bone & Joint Open
Vol. 2, Issue 5 | Pages 323 - 329
10 May 2021
Agrawal Y Vasudev A Sharma A Cooper G Stevenson J Parry MC Dunlop D

Aims. The COVID-19 pandemic posed significant challenges to healthcare systems across the globe in 2020. There were concerns surrounding early reports of increased mortality among patients undergoing emergency or non-urgent surgery. We report the morbidity and mortality in patients who underwent arthroplasty procedures during the UK first stage of the pandemic. Methods. Institutional review board approval was obtained for a review of prospectively collected data on consecutive patients who underwent arthroplasty procedures between March and May 2020 at a specialist orthopaedic centre in the UK. Data included diagnoses, comorbidities, BMI, American Society of Anesthesiologists grade, length of stay, and complications. The primary outcome was 30-day mortality and secondary outcomes were prevalence of SARS-CoV-2 infection, medical and surgical complications, and readmission within 30 days of discharge. The data collated were compared with series from the preceding three months. Results. There were 167 elective procedures performed in the first three weeks of the study period, prior to the first national lockdown, and 57 emergency procedures thereafter. Three patients (1.3%) were readmitted within 30 days of discharge. There was one death (0.45%) due to SARS-CoV-2 infection after an emergency procedure. None of the patients developed complications of SARS-CoV-2 infection after elective arthroplasty. There was no observed spike in complications during in-hospital stay or in the early postoperative period. There was no statistically significant difference in survival between pre-COVID-19 and peri-COVID-19 groups (p = 0.624). We observed a higher number of emergency procedures performed during the pandemic within our institute. Conclusion. An international cohort has reported 30-day mortality as 28.8% following orthopaedic procedures during the pandemic. There are currently no reports on clinical outcomes of patients treated with lower limb reconstructive surgery during the same period. While an effective vaccine is developed and widely accepted, it is very likely that SARS-CoV2 infection remains endemic. We believe that this report will help guide future restoration planning here in the UK and abroad. Cite this article: Bone Jt Open 2021;2(5):323–329


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 34 - 34
1 Nov 2018
Lian W Ko J Wang F
Full Access

Sclerostin (SOST) is an endogenous inhibitor of Wnt/β-catenin signalling pathway to impair osteogenic differentiation and bone anabolism. SOST immunotherapy like monoclonal antibody has been observed to control bone remodeling and regeneration. This study is aimed to develop a SOST vaccine and test its protective effects on estrogen deficiency-induced bone loss in mice. Gene sequences coded SOST peptide putative targeting Wnt co-receptor LRP5 were cloned and constructed into vectors expressing Fc fragment to produced SOST-Fc fusion protein. Mice were subcutaneously injected SOST-Fc to boost anti-SOST antibody. Bone mineral density, microstructure, and mechanical property were quantified using μCT scanning and material testing system. Serum bone formation and resorption markers and anti-SOST levels were measured using ELISA. SOST-Fc injections significantly increased serum anti-SOST antibody levels but reduced serum SOST concentrations. SOST-Fc vaccination significantly reduced estrogen deficiency-induced serum bone resorption markers CTX-1 increased serum bone formation marker osteocalcin. Of note, it significantly alleviated the severity of estrogen-induced loss of bone mineral density, trabecular morphometric properties, and biomechanical forces of bone tissue. Mechanistically, SOSF-Fc vaccination attenuated trabecular loss histopathology and restored immunostaining of Wnt pathway like Wnt3a, β-catenin, and TCF4 in bone tissue along with increased serum osteoclast inhibitor OPG levels but decreased serum osteoclast enhancer RANKL concentrations. Taken together, SOST-Fc vaccination boosts anti-SOST antibody to neutralize SOST and mitigates the estrogen deficiency-induced bone mass and microstructure deterioration through preserving Wnt signalling. This study highlights an innovative remedial potential of SOST vaccine for preventing osteoporosis


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 70 - 71
1 Mar 2008
Trammell R Allan D Moticka E
Full Access

SEREX was used to identify candidate tumor antigens in the nonimmunogenic fibrosarcoma (NFSA) tumor model. One of the six clones identified was of particular interest. NFSA-5 was identified as the receptor for hylaronan-acid-mediated motility (RHAMM), which is involved in cell growth and metastasis. RHAMM is expressed in a variety of human tumors. RHAMM is differentially expressed, with significant levels not found in normal tissues other than testis, placenta, and thymus. Therefore, RHAMM may be an appealing target for human tumor vaccines. The identification of murine homologs to human tumor antigens may aid in the preclinical development of human tumor vaccines. The goal of our studies was to use serological analysis of antigens by recombinant expression cloning (SEREX) to identify candidate tumor antigens in a nonimmunogenic murine fibrosarcoma model. SEREX provides a rapid means of identifying candidate tumor antigens in murine cancer models. The identification of murine homologs to human tumor antigens may aid in the preclinical development of human tumor vaccines. The SEREX approach included construction of a cDNA expression library from NFSA tumors followed by immunoscreening of the library with sera from C3H mice growing NFSA tumors. The nucleotide sequence of insert cDNA was determined for positive clones. Sequence alignments were performed with BLAST software on GenBank database. Six positive clones were identified. Two clones coded for proteins with known expression in normal tissues. Two clones represented heat-shock proteins, known to be upregulated in human and murine tumors. Two of the clones were of particular interest. Clone NFSA-1 was the homolog to NY-REN-58, an antigen previously identified by SEREX analysis of renal cell carcinoma patients. NFSA-5 was identified as the receptor for the hylaronan-acid-mediated motility (RHAMM), which is involved in cell growth and metastasis. RHAMM was recently identified as a leukemia-associated antigen and is expressed in a variety of human solid tumors including renal cell carcinoma, breast carcinoma, and ovarian carcinoma. RHAMM is differentially expressed, with significant levels not found in normal tissues other than testis, placenta, and thymus. Therefore, RHAMM may be an appealing target for human tumor vaccines. Funding: This study was supported by a grant received from the William E. McElroy Charitable Foundation


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_12 | Pages 2 - 2
1 Oct 2021
Hall A Clement N Ojeda-Thies C Maclullich A Toro G Johansen A White T Duckworth A
Full Access

This international multicentre retrospective cohort study aimed to assess: 1) prevalence of COVID-19 in hip fracture patients, 2) effect on mortality, and 3) clinical factors associated mortality among COVID-19-positive patients. A collaboration among 112 centres in 14 nations collected data on all patients with a hip fracture between 1st March-31st May 2020. Patient, injury and surgical factors were recorded, and outcome measures included admission duration, COVID-19 and 30-day mortality status. There were 7090 patients and 651 (9.2%) were COVID-19-positive. COVID-19 was independently associated with male sex (p=0.001), residential care (p<0.001), inpatient fall (p=0.003), cancer (p=0.009), ASA grade 4–5 (p=0.008; p<0.001), and longer admission (p<0.001). Patients with COVID-19 had a significantly lower chance of 30-day survival versus those without (72.7% versus 92.6%, p<0.001), and COVID-19 was independently associated with increased 30-day mortality risk (p<0.001). Increasing age (p=0.028), male sex (p<0.001), renal (p=0.017) and pulmonary disease (p=0·039) were independently associated with higher 30-day mortality risk in patients with COVID-19 when adjusting for confounders. The prevalence of COVID-19 in hip fracture patients was 9% and was independently associated with a three-fold increased 30-day mortality risk. Clinical factors associated with mortality among COVID-19-positive hip fracture patients were identified for the first time. This is the largest study, and the only global cohort, reporting on the effect of COVID-19 in hip fracture patients. The findings provide a benchmark against which to determine vaccine efficacy in this vulnerable population and are especially important in the context of incomplete vaccination programmes and the emergence of vaccine-resistant strains


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 71 - 71
1 Nov 2018
O'Cearbhaill E
Full Access

Efficient, repeatable and reliable insertion of microneedles into skin is paramount to ensure efficacious drug and vaccine delivery, as well as effective microneedle-based biosensing. Through maintaining robust mechanical adhesion, this microneedle platform offers significant potential in therapeutic delivery and longitudinal wearable applications. Here, we have shown that an angled microneedle design, which is conducive to self-administration, has the potential to address key limitations in existing microneedle technology


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 264 - 269
1 Feb 2006
Arora A Nadkarni B Dev G Chattopadhya D Jain AK Tuli SM Kumar S

We studied 51 patients with osteo-articular tuberculosis who were divided into two groups. Group I comprised 31 newly-diagnosed patients who were given first-line antituberculous treatment consisting of isoniazid, rifampicin, ethambutol and pyrazinamide. Group II (non-responders) consisted of 20 patients with a history of clinical non-responsiveness to supervised uninterrupted antituberculous treatment for a minimum of three months or a recurrence of a previous lesion which on clinical observation had healed. No patient in either group was HIV-positive. Group II were treated with an immunomodulation regime of intradermal BCG, oral levamisole and intramuscular diphtheria and tetanus vaccines as an adjunct for eight weeks in addition to antituberculous treatment. We gave antituberculous treatment for a total of 12 to 18 months in both groups and they were followed up for a mean of 30.2 months (24 to 49). A series of 20 healthy blood donors served as a control group. Twenty-nine (93.6%) of the 31 patients in group I and 14 of the 20 (70%) in group II had a clinicoradiological healing response to treatment by five months. The CD4 cell count in both groups was depressed at the time of enrolment, with a greater degree of depression in the group-II patients (686 cells/mm. 3. (. sd. 261) and 545 cells/mm. 3. (. sd. 137), respectively; p < 0.05). After treatment for three months both groups showed significant elevation of the CD4 cell count, reaching a level comparable with the control group. However, the mean CD4 cell count of group II (945 cells/mm. 3. (. sd. 343)) still remained lower than that of group I (1071 cells/mm. 3. (. sd. 290)), but the difference was not significant. Our study has shown encouraging results after immunomodulation and antituberculous treatment in non-responsive patients. The pattern of change in the CD4 cell count in response to treatment may be a reliable clinical indicator


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 77 - 77
1 Dec 2015
Toscano M De Vecchi E Drago L
Full Access

The role of biofilm in pathogenesis of several chronic human infections is widely accepted, as this structure leads pathogens to persist among the human body, being protected from the action of antibacterial molecules and drugs (1). It has been estimated that up to 65% of bacterial infections are caused by microorganisms growing in biofilms (2). Moreover, biofilm is involved in device-related orthopaedic bacterial infections, which are unaffected by vaccines and antibiotic therapies, constituting a serious problem for the human health care. The aim of the present work was to evaluate the anti-biofilm action of a selected and patented lactobacillus strain (MD1) supernatant, both on the in-formation- biofilm and on mature biofilm produced by pathogenic bacteria. MD1 was grown in BHI for 48 h at 37°C. After incubation, the sample was centrifuged for 5’ for 14,000 × g and the supernatant previously filtered and treated in order to obtain the anti-biofilm compounds (Special Supernatant – SS) was collected. Staphylococcus aureus and Pseudomonas aeruginosa strains were grown in BHI for 24h at 37°C. The anti-biofilm ability of the tested SS – lactobacillus strain was evaluated by a spectrophotometric method according to Christensen at al., following the incubation of pathogens and the “mature biofilm” with the lactobacillus supernatant. Confocal Laser Scanning Microscopy was used to confirm the data obtained from Crystal Violet Assay. After the incubation of the SS with pathogens and mature biofilm, the formation of biofilm was inhibited and a significant disruption of the mature biofilm was observed. Interestingly, the same properties were observed also when the SS pH was neutralized to pH 6.5. In particular, the reduction of biofilm production and the disruption of mature biofilm was about 50–70% for all microorganisms. The SS lactobacillus strain MD1 exhibited a relevant antibiofilm action against mature and in-formation-biofilm produced by S. aureus and P. aeruginosa strains tested in the study. Moreover, the antibiofilm action has been observed to be pH-independent, as when the supernatant was neutralized to pH 6.5, the reduction of pathogenic biofilm has been still observed. These promising results highlighted the possibility to use this SS-lactobacillus anti-biofilm property to develop a cost-effective and safety treatment able to reduce the impact of pathogenic biofilm on device-related orthopaedic bacterial infections


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1193 - 1195
1 Nov 2022
Rajput V Meek RMD Haddad FS

Periprosthetic joint infection (PJI) remains an extremely challenging complication. We have focused on this issue more over the last decade than previously, but there are still many unanswered questions. We now have a workable definition that everyone should align to, but we need to continue to focus on identifying the organisms involved. Surgical strategies are evolving and care is becoming more patient-centred. There are some good studies under way. There are, however, still numerous problems to resolve, and the challenge of PJI remains a major one for the orthopaedic community. This annotation provides some up-to-date thoughts about where we are, and the way forward. There is still scope for plenty of research in this area.

Cite this article: Bone Joint J 2022;104-B(11):1193–1195.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 471 - 473
1 May 1998
Peltola H Kallio MJT Unkila-Kallio L

In many countries Haemophilus influenzae type b (Hib) is the second most common cause of septic arthritis in children. In Finland large-scale immunisation against Hib using conjugate vaccines began in 1986, four years after a multicentre prospective study of orthopaedic infections in children had started. Since 1982, including six years before and ten after starting routine Hib vaccination, there has been a major change in the pattern of septic arthritis. From 1982 to 1988, 32 of 61 cases (53%) were caused by staphylococci, 22 (36%) by Hib and 7 (11%) by other bacteria. Since 1988, Hib infection has disappeared, and one-third of cases of childhood septic arthritis has been eliminated. This change has allowed us to reduce initial antimicrobial therapy for such children to cover only Gram-positive cocci. The more limited treatment is safer, reduces cost, and simplifies treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 64-B, Issue 4 | Pages 503 - 507
1 Aug 1982
Pincott Taffs L

Although a variety of techniques have been used with varying success to induce scoliosis in animals, primates have rarely been used. A series of monkeys is presented where scoliosis developed incidentally during the routine virulence testing of live, attenuated, oral poliomyelitis vaccines by intraspinal injection. The site and extent of histological damage in the different anatomical areas of the spinal cord were examined in 25 scoliotic monkeys and 25 matched controls. Analysis of the data demonstrated that there was significantly greater damage on the convex side of the spinal cords of the scoliotic animals, particularly in the sensory areas-the posterior horn and Clarke's column. Scoliosis was not thought to be caused by clinical poliomyelitis as the involvement of the anterior horn was not significantly greater than in the scoliotic animals than in the controls. These observations are taken to support the view that scoliosis may develop as a result of asymmetrical weakness of the paraspinal muscles due to the loss of proprioceptive innervation


Bone & Joint Research
Vol. 11, Issue 2 | Pages 73 - 81
22 Feb 2022
Gao T Lin J Wei H Bao B Zhu H Zheng X

Aims

Trained immunity confers non-specific protection against various types of infectious diseases, including bone and joint infection. Platelets are active participants in the immune response to pathogens and foreign substances, but their role in trained immunity remains elusive.

Methods

We first trained the innate immune system of C57BL/6 mice via intravenous injection of two toll-like receptor agonists (zymosan and lipopolysaccharide). Two, four, and eight weeks later, we isolated platelets from immunity-trained and control mice, and then assessed whether immunity training altered platelet releasate. To better understand the role of immunity-trained platelets in bone and joint infection development, we transfused platelets from immunity-trained mice into naïve mice, and then challenged the recipient mice with Staphylococcus aureus or Escherichia coli.


The Journal of Bone & Joint Surgery British Volume
Vol. 77-B, Issue 6 | Pages 971 - 974
1 Nov 1995
Simonian P Gilbert M Trumble T

We tested prospectively for hepatitis C virus (HCV) in one orthopaedic surgeon's operative practice for one year. Of 425 consecutive patients, 19 (4.5%) were positive for HCV infection using a second-generation screening assay. The highest correlation with a positive test was the presence of tattoos and the second highest was intravenous drug abuse, but only after a second interview, since most patients did not report this risk on the initial questionnaire. Based on the criteria of the US Public Health Services algorithm, nine (47%) of the patients with a positive initial screening test or 2.2% of the 425 patients, had hepatitis C (both anti-HCV-positive and elevated alanine aminotransferase). In this group of nine, the presence of tattoos had the highest and intravenous drug abuse the second highest correlation, also after the second interview. There is no vaccine available for the prevention of HCV infection, and prophylactic immunoglobulin therapy has no proven value for primary exposure


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 3 | Pages 489 - 491
1 May 1989
McLeod G

Surgeons are at risk from both hepatitis B and human immunodeficiency viruses. While vaccines have been developed against the former, barrier methods remain the mainstay of protection. Puncture wounds of the hand are a potential source of contamination; the protection afforded by surgical gloves has been investigated. Gloves from 280 orthopaedic operations for trauma were tested for perforations; one or more was found after 30% of the operations in gloves worn by the surgeon or scrub nurse. About 60% of the perforations were noticed at the time of penetration and most affected the dominant thumb and index finger. Puncture was more common during operations lasting more than one hour. The incidence of perforation was 19% for the outer of double gloves, 14% for a single glove and 6% for the inner of double gloves. These results indicate that surgical gloves function poorly as a protective barrier, especially in difficult, lengthy, fracture surgery. The practice of double-gloving confers increased but not absolute protection