Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 59 - 59
1 Apr 2018
Garcia-Rey E Cimbrelo EG
Full Access

Introduction. Implantation of total hip replacement (THR) remains a concern in patients with developmental dysplasia of the hip (DDH) because of bone deformities and previous surgeries. In this frequently young population, anatomical reconstruction of the hip rotation centre is particularly challenging in severe, low and high dislocation, DDH. The basic principles of the technique and the implant selection may affect the long-term results. The aim of the study was to compare surgical difficulties and outcome in patients who underwent THR due to arthritis secondary to moderate or severe DDH. Material and Methods. We assessed 131 hips in patients with moderate DDH (group 1) and 56 with severe DDH (Group 2) who underwent an alumina-on-alumina THR between 1999 and 2012. The mean follow-up was 11.3 years (range, 5 to 18). Mean age was 51.4 years in group 1 and 42.2 in group 2. There were previous surgery in 5 hips in group 1 and in 20 in group 2 (p<0.001). A dysplastic acetabular shape type C according to Dorr and a radiological cylindrical femur were both more frequent in group 2 (in both cases p<0.001). We always tried to place the acetabular component in the true acetabulum. Smaller cups (p<0.001), screw use for primary fixation (p<0.001) and bone autograft used as segmental reinforcement in cases of roof deficiency (p<0.001) were more frequent in group 2. Radiological analysis of the cup included acetabular abduction, version and Wiberg angles, horizontal, vertical, and hip rotation centre distances, and acetabular head index. Abductor mechanism reconstruction according to the lever arm distance and height of the greater trochanter was also evaluated. Cup placement within or outside Lewinnek´s safe zone was recorded. Two-way ANOVA with repeated measures were used to analyse clinical and radiological changes. Results. There were 6 cups revised for aseptic loosening, three in each group. Survivorship analysis at 15 years: 97.3% (95% IC 94.4–100) for group 1 and 93.0% (95% IC 85.2–100) for group 2 (p=0.186). Despite a worse preoperative status in group 2, the outcome improved similarly in both groups. Postoperative radiological measurements were better in group 1 except for acetabular acetabular and version angles. The improvement from the pre- to the post-operative situation was greater in group 2 except for the height of the greater trochanter. Acetabular component placement within the Lewinnek´s safe zone was similar in both groups. All revised cups were outside this zone. No osteolysis or complications related to the use of ceramics were found. Conclusions. The alumina-on-alumina THR provided good results in both groups including pain relief and functional improvement. Placing the acetabular component in the true acetabulum inside the Lewinnek safe zone can ensure a good result in these challenging dysplastic hips


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLII | Pages 7 - 7
1 Sep 2012
Berstock JR Spencer RF
Full Access

Pre-existing hip pathology such as femoroacetabular impingement is believed by some, to have a direct causal relationship with osteoarthritis of the hip. The strength of this relationship remains unknown. We investigate the prevalence of abnormal bone morphology in the symptomatic hip on the pre-operative anteroposterior pelvic radiograph of consecutive patients undergoing hip resurfacing. Rotated radiographs were excluded. One hundred patients, of mean age 53.5 years were included (range 33.4–71.4 years, 32% female). We examined the films for evidence of a cam-type impingement lesion (alpha angle >50.5°, a pistol grip, Pitt's pits, a medial hook, an os acetabuli and rim ossification), signs of acetabular retroversion or a pincer-type impingement lesion (crossover sign, posterior wall sign, ischial sign, coxa profunda, protrusio, coxa vara, Tonnis angle < 5°), and hip dysplasia (a Tonnis acetabular angle >14° and a lateral centre-edge angle of Wiberg <20°). Pre-existing radiographic signs of pathology were present in a large proportion of hips with low grade (Tonnis grade 1–2) arthritis. There is a group of patients who presented with more advanced osteoarthritis in which we suspect abnormal bone morphology to be a causative factor but, for example, neck osteophytes obscure the diagnosis of a primary cam lesion. Our findings corroborate those of Harris and Ganz. Impingement is radiographically detectable in a large proportion of patients who present with early arthritis of the hip, and therefore we agree that it is a likely pre-cursor for osteoarthritis. Treatments directed at reducing hip impingement may stifle the progression of osteoarthritis


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 57 - 57
1 Mar 2013
Firth G Robertson A Ramguthy Y Schepers A
Full Access

Purpose of Study. Multiple measurements have been described for the assessment of developmental dysplasia of the hip (DDH). In particular, the centre edge angle (CEA) has been described by Wiberg to assess the position of the femoral head in relation to the acetabular edge in patients over the age of five years. The purpose of this study is twofold. Firstly to assess the reliability of all measurements available in the literature and secondly to evaluate whether or not the CEA can be reliably measured below five years of age. Methods. Eighty seven patients were included for assessment. Radiographs were measured within six months of spica cast/Batchelor cast removal, depending on whether closed or open reduction was performed. A web based computer programme was used to store the radiographs electronically and with the help of an electronic template the following measurements were recorded: CEA, AI, centre head distance discrepancy ratio (CHDDR), Smith's c/b and h/b ratios. Three readers recorded measurements at two intervals, to determine intra and inter reader reliability. Results. The mean age at measurement was 2.26 years (Range 0.60–5.99). Regarding intra reader reliability, the AI and CEA were the most reliable measurements with a mean intraclass correlation coefficient (ICC) of 0.87 [CI 0.78–0.94] and 0.78 [CI 0.43–0.94] respectively. Regarding inter reader reliability, the CEA was the most reliable measurement with a mean ICC of 0.84 [CI 0.79–0.90]. Conclusion. This study confirms the reliability of the CEA, AI, CHDDR, Smith's c/b and h/b ratios in children with DDH. It also describes the reliable use of the CEA at a younger age in DDH than previously described which has prognostic implications. NO DISCLOSURES


The Bernese periacetabular osteotomy (PAO) described by Ganz, et al. is a commonly used surgical intervention in hip dysplasia. PAO is being performed more frequently and is a viable alternative to hip arthroplasty for younger and more physically active patients. The procedure is challenging because pelvic anatomy is prohibitive to visibility and open access and requires four X-ray guided blind cuts around the acetabulum to free it from the hemi-pelvis. The crucial step is the re-orientation of the freed acetabulum to correct the inadequate coverage of the femoral head by idealy rotating the freed acetabular fragment. Diagnosis and the decision for surgical intervention is currently based upon patient symptoms, use of two-dimensional (2D) radiographic measurements, and the intrinsic experience of the surgeon. With the advent of new technologies allowing three-dimensional reconstructions of hip anatomy, previous two-dimensional X-ray definitions have created much debate in standardizing numerical representations of hip dysplasia. Recent work done by groups such as Arminger et al. have combined and expanded two-dimensional measurements such as Center-Edge (CE) angle of Wiberg, Vertical-Center-Anterior margin (VCA) angle, Acetabular Anteversion (AcetAV) and applied them to three-dimensional CT rendering of hip anatomy. Further, variability in pelvic tilt is a confounding factor and has further impeded measurement translatability. Computer assisted surgery (CAS) and navigation also called image-guided surgery (IGS) has been used in clinical cases of PAO with mixed results. The first appearing study of CAS/IGS in PAO was conducted by Langlotz, et. al 1997 and reported no clinical benefit to using CAS/IGS. However, they did conclude that the use of CAS/IGS is undoubtedly useful for surgeons starting this technically demanding procedure. This is supported by a more recent study done by Hsieh, et. al 2006 who conducted a two year randomised study of CAS/IGS in PAO and concluded its feasibility to facilitate PAO, but there was not an additional benefit when conventional PAO is done by an experienced surgeon. A study done by Peters, et. Al 2006 studying the learning curve necessary to become proficient at PAO found that “The occurrence of complications demonstrates a substantial learning curve” and thus makes a compelling argument for the use of CAS/IGS. A major obstacle to navigation and CAS/IGS revolves around consistency, intra-operative time and ease of use. Custom made guides and implants may help circumvent these limitations. The use of CAS/CAM in developing custom made guides has been proven very successful in areas of oral maxillofacial surgery, hip arthroplasty, and knee replacement surgeries. Additionally, a significant study in the development of rapid prototyping guides in the treatment of dysplastic hip joints was done by Radermacher et. al 1998. They describe a process of using CAS/CAM within the operational theatre using a desktop planning station and a manufacturing unit to develop what they termed as “templates” to carry out a triple osteotomy. Our group is evaluating and developing strategies in PAO using CAS/IGS and more recently using CAS and computer aided modeling (CAM) to develop custom made guides for acetabular positioning. Our first study (Burch et al.) focused on CAS/IGS in PAO using cadavers and yielded small mean cut (1.97± 0.73mm) and CE angle (4.9± 6.0) errors. Our recent study used full sized high-resolution foam pelvis models (Sawbones. ®. , Vashon, Washington) and used CAS/IGS to carry out the pelvic cuts and CAS/CAM to develop a acetabular positioning guide (APG) by rapid prototyping. The CAS/IGS pelvic cuts results were good (mean error of 3.18 mm ± 1.35) and support our and other studies done using CAS/IGS in PAO. The APG yielded high accuracy and was analysed using four angles with an overall mean angular error of 1.81 (0.55. 0. )and individual angulation was as follows: CE 0.83° ± 0.53, S-AC 0.28° ± 0.19, AcetAV 0.41° ± 0.37, and VCA 0.68° ± 0.27. To our knowledge this is the first developed APG for PAO. The APG we developed was to demonstrate the concept of using a positioning guide to obtain accurate rotation of the acetabular fragment. For a clinical application a refined and sleeker design would be required. Further, because working space within the pelvis is extraordinary constrained, once fitted the APG would need to remain and serve as an implantable cage capable of holding bone graft. A potential material is polyetheretherketone (PEEK). Customised PEEK implants and cages have been established in the literature and is a potential option for PAO. The benefits of an implant not only serve to constrain the acetabular fragment in the ideal position based upon the pre-operative plan, but may also provide the structural support for rotations not other wise possible. Though CAS/IGS is a proven viable option, we envision a potentially simpler method for PAO, the use of a cut guide and an acetabular positioning implant. Using customized guides and implants could potentially circumvent the need for specialised intra-operative equipment and the associated learning curves, by providing guides that incorporate the pre-operational plan within the guide, constraining the surgeon to the desired outcome