Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 29 - 29
7 Aug 2024
Hunter R Beattie M Zubala A Gorely T
Full Access

Background. Mobile apps have shown promise in helping people to self-manage conditions like chronic low back pain (CLBP). However, it is unclear who benefits most, why, and under what circumstances. This limits our understanding of how to maximize the potential of mobile app technology. Aim. This study aimed to test and refine programme theories about how mobile apps support people to self-manage CLBP in a real-world setting. The theories were based on a previously published realist review. Methods. A realist evaluation was conducted using one-to-one realist interviews by telephone with participants who had used the Curable app to self-manage their CLBP for three months. The interviews were guided by programme theories from the realist review. Analysis of the interviews used abductive and retroductive logic to create chains of inferences, which were then developed into context-mechanism-outcome configurations (CMOCs). These CMOCs offered causal explanations about who might benefit from a mobile app to self-manage CLBP, why and in what circumstances. Results. Ten interviews were conducted (nine with people with CLBP who trialled the app and one with a founding member of Curable LLC). Twenty CMOCs were created that identified key mechanisms such as agency, control and reassurance that interact with contextual factors such as acceptance, internal capacity, and a biopsychosocial approach to pain management. These factors influence whether a person with CLBP will benefit from a mobile app for self-management. Conclusions. Twenty CMOCs were created to support three programme theories centering around concepts of empowerment, burden of care, and timing. Conflicts of interest. None. Sources of funding. R Hunter's work was supported by the Inverness and Highland City-Region Deal Studentship Award [2018]. Presented at: 13th Congress of the European Pain Federation (EFIC), September 2023, Budapest, Hungary


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims

Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy.

Methods

We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety.

Cite this article: Bone Joint J 2020;102-B(3):371–375.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 190 - 196
1 Mar 1997
Lee DY Choi IH Chung CY Cho T Lee JC

We classified fixed pelvic obliquity in patients after poliomyelitis into two major types according to the level of the pelvis relative to the short leg. Each type was then divided into four subtypes according to the direction and severity of the scoliosis. In 46 patients with type-I deformity the pelvis was lower and in nine with type II it was higher on the short-leg side. Subtype-A deformity was a straight spine with a compensatory angulation at the lower lumbar level, mainly at L4-L5, subtype B was a mild scoliosis with the convexity to the short-leg side, subtype C was a mild scoliosis with the convexity opposite the short-leg side, and subtype D was a moderate to severe paralytic scoliosis with the convexity to the short-leg side in type I and to the opposite side in type II. A combination of surgical procedures improved the obliquity in most patients. These included lumbodorsal fasciotomy, abductor fasciotomy and stabilisation of the hip by triple innominate osteotomy with or without transiliac lengthening. In patients with type ID or type IID appropriate spinal fusion was usually necessary


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 5 - 10
1 Jan 2020
Cawley DT Rajamani V Cawley M Selvadurai S Gibson A Molloy S

Aims

Intraoperative 3D navigation (ION) allows high accuracy to be achieved in spinal surgery, but poor workflow has prevented its widespread uptake. The technical demands on ION when used in patients with adolescent idiopathic scoliosis (AIS) are higher than for other more established indications. Lean principles have been applied to industry and to health care with good effects. While ensuring optimal accuracy of instrumentation and safety, the implementation of ION and its associated productivity was evaluated in this study for AIS surgery in order to enhance the workflow of this technique. The aim was to optimize the use of ION by the application of lean principles in AIS surgery.

Methods

A total of 20 consecutive patients with AIS were treated with ION corrective spinal surgery. Both qualitative and quantitative analysis was performed with real-time modifications. Operating time, scan time, dose length product (measure of CT radiation exposure), use of fluoroscopy, the influence of the reference frame, blood loss, and neuromonitoring were assessed.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 358 - 365
1 Mar 2015
Zhu L F. Zhang Yang D Chen A

The aim of this study was to evaluate the feasibility of using the intact S1 nerve root as a donor nerve to repair an avulsion of the contralateral lumbosacral plexus. Two cohorts of patients were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients with a unilateral fracture of the sacrum and sacral nerve injury were stimulated during surgery to establish the precise functional distribution of the S1 nerve root and its proportional contribution to individual muscles. In cohort 2, the contralateral uninjured S1 nerve root of six patients with a unilateral lumbosacral plexus avulsion was transected extradurally and used with a 25 cm segment of the common peroneal nerve from the injured leg to reconstruct the avulsed plexus.

The results from cohort 1 showed that the innervation of S1 in each muscle can be compensated for by L4, L5, S2 and S3. Numbness in the toes and a reduction in strength were found after surgery in cohort 2, but these symptoms gradually disappeared and strength recovered. The results of electrophysiological studies of the donor limb were generally normal.

Severing the S1 nerve root does not appear to damage the healthy limb as far as clinical assessment and electrophysiological testing can determine. Consequently, the S1 nerve can be considered to be a suitable donor nerve for reconstruction of an avulsed contralateral lumbosacral plexus.

Cite this article: Bone Joint J 2015; 97-B:358–65.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 360 - 365
1 Mar 2014
Zheng GQ Zhang YG Chen JY Wang Y

Few studies have examined the order in which a spinal osteotomy and total hip replacement (THR) are to be performed for patients with ankylosing spondylitis. We have retrospectively reviewed 28 consecutive patients with ankylosing spondylitis who underwent both a spinal osteotomy and a THR from September 2004 to November 2012. In the cohort 22 patients had a spinal osteotomy before a THR (group 1), and six patients had a THR before a spinal osteotomy (group 2). The mean duration of follow-up was 3.5 years (2 to 9). The spinal sagittal Cobb angle of the vertebral osteotomy segment was corrected from a pre-operative kyphosis angle of 32.4 (SD 15.5°) to a post-operative lordosis 29.6 (SD 11.2°) (p < 0.001). Significant improvements in pain, function and range of movement were observed following THR. In group 2, two of six patients had an early anterior dislocation. The spinal osteotomy was performed two weeks after the THR. At follow-up, no hip has required revision in either group. Although this non-comparative study only involved a small number of patients, given our experience, we believe a spinal osteotomy should be performed prior to a THR, unless the deformity is so severe that the procedure cannot be performed.

Cite this article: Bone Joint J 2014;96-B:360–5.