Advertisement for orthosearch.org.uk
Results 1 - 20 of 113
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1774 - 1782
1 Dec 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims

The aim of this study was to determine if uncemented acetabular polyethylene (PE) liner geometry, and lip size, influenced the risk of revision for instability or loosening.

Methods

A total of 202,511 primary total hip arthroplasties (THAs) with uncemented acetabular components were identified from the National Joint Registry (NJR) dataset between 2003 and 2017. The effect of liner geometry on the risk of revision for instability or loosening was investigated using competing risk regression analyses adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, surgeon grade, surgical approach, head size, and polyethylene crosslinking. Stratified analyses by surgical approach were performed, including pairwise comparisons of liner geometries.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 801 - 810
1 Jul 2022
Krull P Steinbrück A Grimberg AW Melsheimer O Morlock M Perka C

Aims. Registry studies on modified acetabular polyethylene (PE) liner designs are limited. We investigated the influence of standard and modified PE acetabular liner designs on the revision rate for mechanical complications in primary cementless total hip arthroplasty (THA). Methods. We analyzed 151,096 primary cementless THAs from the German Arthroplasty Registry (EPRD) between November 2012 and November 2020. Cumulative incidence of revision for mechanical complications for standard and four modified PE liners (lipped, offset, angulated/offset, and angulated) was determined using competing risk analysis at one and seven years. Confounders were investigated with a Cox proportional-hazards model. Results. Median follow-up was 868 days (interquartile range 418 to 1,364). The offset liner design reduced the risk of revision (hazard ratio (HR) 0.68 (95% confidence interval (CI) 0.50 to 0.92)), while the angulated/offset liner increased the risk of revision for mechanical failure (HR 1.81 (95% CI 1.38 to 2.36)). The cumulative incidence of revision was lowest for the offset liner at one and seven years (1.0% (95% CI 0.7 to 1.3) and 1.8% (95% CI 1.0 to 3.0)). No difference was found between standard, lipped, and angulated liner designs. Higher age at index primary THA and an Elixhauser Comorbidity Index greater than 0 increased the revision risk in the first year after surgery. Implantation of a higher proportion of a single design of liner in a hospital reduced revision risk slightly but significantly (p = 0.001). Conclusion. The use of standard acetabular component liners remains a good choice in primary uncemented THA, as most modified liner designs were not associated with a reduced risk of revision for mechanical failure. Offset liner designs were found to be beneficial and angulated/offset liner designs were associated with higher risks of revision. Cite this article: Bone Joint J 2022;104-B(7):801–810


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 9 - 9
1 Jan 2018
Rudelli S Silva E Rudelli B Gregory C
Full Access

Dislocation is one of the most common and disturbing complications after total hip arthroplasty (THA). This is a challenging situation, especially in patients with a high risk of dislocation. Constrict acetabular liner is among the different types of technics for preventing instability. Describe the radiological and clinical results of patients submitted to a primary or revision THA using a constrict acetabular liner. 52 patients with high risk for dislocation were operated between 2006 and 2015 with a constrict acetabular liner. They were evaluated clinically and radiographically after 3 months, 6 months and 1 year after surgery and them annually. The Merle D'Aubigné Postel Method was used to access the clinical outcomes and anteroposterior pelvic and hip profile radiography was performed to access any evidence of loosening of the acetabular cup. 33 (63%) patients were female, the average age were 80 (52 – 94) years old. 29 (75%) cases were primary THA and 13 (25%) revision surgery. The mean follow up was 49(19 – 126) months. 31 (59%) patients died during the study, 5 deaths (9.6%) occurred in the first 3 months after surgery. There were 4 unsatisfactory results: 2 (3.8%) dislocations (secondary to high energy trauma) and 2 (3.8%) early aseptic loosening that required revision surgery. The median preoperative global score of Merle D'Aubigné Postel was 16.7% and the postoperative was 88.9%. The population that presented the least improvement in the clinical outcome (< 50% of improvement) were patients with previous surgery on the same hip (p<0.0001) and revisions surgeries due to instability (p=0.005). When comparing the mortality rate with the percent of clinical improvement after surgery, there was no statistic difference. Constricted acetabular liner is a good option for treatment in selected cases, with a low rate of complications and a good implant survival with a short follow up


The protective effect of lipped polyethylene uncemented acetabular liners against revision THA for instability has been reported. However, the effect of lip size has not been explored, nor has the effect on revision THA for loosening. We aimed to determine if uncemented acetabular liner geometry, and lip size, influences the risk of revision THA for instability or loosening. 202511 primary THAs with uncemented polyethylene acetabular components were identified from the NJR dataset (2003 – 2017). The effect of acetabular liner geometry and lip size on the risk of revision THA for instability or loosening was investigated using binomial regression and competing risks survival analyses (competing risks were revision for other causes or death) adjusting for age, gender, ASA grade, diagnosis, side, institution type, surgeon grade, surgical approach, head size and polyethylene crosslinking. The distribution of acetabular liners was: neutral – 39.4%, offset neutral – 0.9%, 10-degree – 34.5%, 15-degree – 21.6%, 20-degree – 0.8%, offset reorientating – 2.82%. There were 690 (0.34%) revision THAs for instability and 604 (0.3%) for loosening. Significant subhazard risk ratios were found in revision THA for instability with 10-degree (0.63), 15-degree (0.48) and offset reorientating (1.6) liners, compared to neutral liners. There was no association found between liner geometry and risk of revision THA for loosening. This Registry based study confirms a significantly lower risk of revision THA for instability when a lipped liner is used, compared to neutral liners, and a higher risk with the use of offset reorientating liners. Furthermore, 15degree liners seem to have a lower risk than 10degree liners. We did not find an association between acetabular liner geometry and revision THA for loosening. 10- and 15-degree lipped polyethylene liners seem to offer a lower revision risk over neutral liners, at least at medium term followup. Further studies are required to confirm if this benefit continues into the long-term


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1052 - 1059
1 Oct 2023
El-Sahoury JAN Kjærgaard K Ovesen O Hofbauer C Overgaard S Ding M

Aims. The primary outcome was investigating differences in wear, as measured by femoral head penetration, between cross-linked vitamin E-diffused polyethylene (vE-PE) and cross-linked polyethylene (XLPE) acetabular component liners and between 32 and 36 mm head sizes at the ten-year follow-up. Secondary outcomes included acetabular component migration and patient-reported outcome measures (PROMs) such as the EuroQol five-dimension questionnaire, 36-Item Short-Form Health Survey, Harris Hip Score, and University of California, Los Angeles Activity Scale (UCLA). Methods. A single-blinded, multi-arm, 2 × 2 factorial randomized controlled trial was undertaken. Patients were recruited between May 2009 and April 2011. Radiostereometric analyses (RSAs) were performed from baseline to ten years. Of the 220 eligible patients, 116 underwent randomization, and 82 remained at the ten-year follow-up. Eligible patients were randomized into one of four interventions: vE-PE acetabular liner with either 32 or 36 mm femoral head, and XLPE acetabular liner with either 32 or 36 mm femoral head. Parameters were otherwise identical except for acetabular liner material and femoral head size. Results. A total of 116 patients participated, of whom 77 were male. The median ages of the vE-PE 32 mm and 36 mm groups were 65 (interquartile range (IQR) 57 to 67) and 63 years (IQR 56 to 66), respectively, and of the XLPE 32 mm and 36 mm groups were 64 (IQR 58 to 66) and 61 years (IQR 54 to 66), respectively. Mean total head penetration was significantly lower into vE-PE acetabular liner groups than into XLPE acetabular liner groups (-0.219 mm (95% confidence interval -0.348 to -0.090); p = 0.001). There were no differences in wear according to head size, acetabular component migration, or PROMs, except for UCLA. There were no cases of aseptic loosening or failures requiring revision at long-term follow-up. Conclusion. Significantly lower wear was observed in vE-PE acetabular liners than in XLPE acetabular liners. No difference in wear was observed between different head size or PROMs except for the UCLA at ten years. Cite this article: Bone Joint J 2023;105-B(10):1052–1059


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 64 - 64
1 Oct 2019
McCalden RW Decker MM Klassen RJ Lanting B
Full Access

Introduction. HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise mechanical properties, leave oxidation-prone residual free radicals, or both. Reports of mechanical failure of HXLPE acetabular liner rims raise concerns about thermal free radical stabilization and in vivo oxidization on implant properties. The purpose of this study is to explore the differences in the mechanical, physical and chemical properties of HXLPE acetabular liner rims after extended time in vivo between liners manufactured with different thermal free radical stabilization techniques. Material and methods. Remelted, single annealed and sequentially annealed retrieved HXLPE acetabular liners with in vivo times greater than 4.5 years were obtained from our implant retrieval laboratory. All retrieved liners underwent an identical sanitation and storage protocol. For mechanical testing, a total of 55 explants and 13 control liners were tested. Explant in vivo time ranged from 4.6 – 14.0 years and ex vivo time ranged from 0 – 11.6 years. Rim mechanical properties were tested by microindentation hardness testing using a Micromet II Vickers microhardness tester following ASTM standards. A subset of 16 explants with ex vivo time under one year along with five control liners were assessed for oxidation by FTIR, crystallinity by Raman spectroscopy, and evidence of microcracking by SEM. Results. No significant difference in in vivo or ex vivo was found between thermal stabilization groups in either set of explants studied. In the mechanically tested explants, there was no significant correlation between in vivo time and Vickers hardness in any thermal stabilization group. A significant correlation was found between ex vivo time and hardness in remelted liners (Δ=.520, p=.011), but not in either annealed cohort. ANCOVA with ex vivo time as a covariate found a significant difference in hardness between the thermal free radical stabilization groups (p<.0005, η. 2. = 0.322). Post hoc analysis revealed hardness was significantly lower in the retrieved remelted group compared to both the single annealed (p=.001) and sequentially annealed (p<.0005) cohorts. Hardness was significantly higher in the retrieved remelted liners compared to controls (p=.007), with no different in either annealed cohort (figure 1). Detectable subsurface oxidation (OI > 0.1) was found in retrieved remelted (25%), single annealed (100%) and sequentially annealed (75%) liner rims (figure 2). Crystallinity was increased in the subsurface region relative to control liners for both annealed, but not remelted, liner rims. Hardness was increased in oxidized rims for both annealed cohorts but not in the remelted cohort. Microcracking was only found along the surface of one unoxidized remelted liner rim. Conclusion. Mechanical properties were reduced at baseline and worsened after in vivo time for remelted HXLPE liner rims. Rim oxidation was detected in all groups. Oxidation was associated with increased crystallinity and hardness in annealed cohorts, but not remelted liners. Increased crystallinity and oxidation do not appear to be directly causing the worsened mechanical behavior of remelted HXLPE liner rims after extended in vivo time. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 41 - 41
1 Nov 2021
Rudelli S Rudelli M Giglio P Rudelli B
Full Access

Hip instability is one of the most common complications after total hip arthroplasty (THA). Among the possible techniques to treat and prevent hip dislocation, the use of constrained liners is a well-established option. However, there is concern regarding the longevity of these devices due to higher mechanical stress caused by limited hip motion. The primary aim of this paper is to analyze the failure rate of a specific constrained liner in a series of consecutive cases.

This study is a retrospective consecutive case series of THA and revision hip arthroplasty (RHA), in which a constrained polyethylene insert was used to treat or prevent hip instability. Patients were divided in 3 different groups (THA for hip fracture, THA for osteoarthrosis, and RHA). Survival analysis was performed for failure, defined as at least one episode of hip dislocation or radiographical signs of acetabular loosening. Logistical regression was used to investigate risk factors for failure.

A total of 103 patients were included in the study. Fourteen patients (13,6%) were THA for osteoarthrosis, 60 (58,3%) were THA for hip fracture, and 29(28,2%) were RHA. The median follow-up was 28 months (ranging 12 − 173 months). Failure occurred in 4 cases (3,9%) comprehending 2 dislocations (1,9%) and 2 early acetabular loosening (1,9%). Amongst the groups, there were no cases of failures in the THA due to osteoarthrosis, in the THA for hip fracture there were 3 cases (5%) and in the RHA one case (3,4%). Failure-free survival was not statistically different between groups. There were no risk factors statistically related to failure.

The use of constrained acetabular insert to prevent or treat instability achieved an adequate survival time with a low rate of complications. Further studies are necessary to corroborate our findings.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 12 | Pages 1636 - 1638
1 Dec 2005
Blom AW Astle L Loveridge J Learmonth ID

Polyethylene liners of modular acetabular components wear sometimes need to be replaced, despite the metal shell being well fixed. Replacing the liner is a relatively simple procedure, but very little is known of the outcome of revision. We prospectively followed up 1126 Harris-Galante I metal-backed, uncemented components for between nine and 19 years. We found 38 (3.4%) liners of 1126 acetabular components wore and required revision. These revisions were then followed up for a mean of 4.8 years. The rate of dislocation was 28.9%. Nine of the dislocations occurred once and two were recurrent.

The overall secondary revision rate was three of 38 total hip replacements (7.9%) at a mean follow-up of 4.8 years. This gives a 92.1% survivorship (35 of 38) at under five years. In isolated revision of a liner, we had a complication rate of 23% (three of 13). In revision of a liner combined with revision of the femoral stem, there was a complication rate of 48% (12 of 25). We discuss possible reasons for the high dislocation rates.

Leaving the well-fixed acetabular shell in situ leads to an increased risk of instability. However, this needs to be balanced against the otherwise low complication rate for revision of the liner. Patients should be consented accordingly.


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 884 - 888
1 Jul 2014
Insull PJ Cobbett H Frampton CM Munro JT

We compared the rate of revision for instability after total hip replacement (THR) when lipped and non-lipped acetabular liners were used. We hypothesised that the use of a lipped liner in a modular uncemented acetabular component reduces the risk of revision for instability after primary THR. Using data from the New Zealand Joint Registry, we found that the use of a lipped liner was associated with a significantly decreased rate of revision for instability and for all other indications. Adjusting for the size of the femoral head, the surgical approach and the age and gender of the patient, this difference remained strongly significant (p < 0.001).

We conclude that evidence from the New Zealand registry suggests that the use of lipped liners with modular uncemented acetabular components is associated with a decreased rate of revision for instability after primary THR.

Cite this article: Bone Joint J 2014;96-B:884–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1036 - 1041
1 Aug 2007
Knahr K Pospischill M Köttig P Schneider W Plenk H

Two Durasul highly crosslinked polyethylene liners were exchanged during revision surgery four and five years after implantation, respectively. The retrieved liners were evaluated macroscopically and surface analysis was performed using optical and electron microscopy. A sample of each liner was used to determine the oxidation of the material by Fourier transform infrared spectroscopy. Samples of the capsule were examined histologically.

The annual wear rate was found to be 0.010 and 0.015 mm/year, respectively. Surface analysis showed very little loss of material caused by wear. Histological evaluation revealed a continuous neosynovial lining with single multinucleated foreign-body giant cells. Our findings showed no unexpected patterns of wear on the articulating surfaces up to five years after implantation and no obvious failure of material.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1439 - 1445
1 Nov 2007
Triclot P Grosjean G El Masri F Courpied JP Hamadouche M

We carried out a prospective randomised study designed to compare the penetration rate of acetabular polyethylene inserts of identical design but different levels of cross-linking at a minimum of four years follow-up. A total of 102 patients (102 hips) were randomised to receive either highly cross-linked Durasul, or contemporary Sulene polyethylene inserts at total hip replacement. A single blinded observer used the Martell system to assess penetration of the femoral head. At a mean follow-up of 4.9 years (4.2 to 6.1) the mean femoral head penetration rate was 0.025 mm/year (sd 0.128) in the Durasul group compared with 0.106 mm/year (sd 0.109) in the Sulene group (Mann-Whitney test, p = 0.0027). The mean volumetric penetration rate was 29.24 mm3/year (sd 44.08) in the Durasul group compared with 53.32 mm3/year (sd 48.68) in the Sulene group. The yearly volumetric penetration rate was 55% lower in the Durasul group (Mann-Whitney test, p = 0.0058). Longer term results are needed to investigate whether less osteolysis will occur.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 591 - 594
1 May 2007
Lie SA Hallan G Furnes O Havelin LI Engesæter LB

We analysed the results of different strategies in the revision of primary uncemented acetabular components reported to the Norwegian Arthroplasty Register. The aim was to compare the risk of further acetabular revision after isolated liner exchange and complete component revision. The results of exchanging well-fixed components were also compared with those of exchanging loose acetabular components. The period studied was between September 1987 and April 2005. The following groups were compared: group 1, exchange of liner only in 318 hips; group 2, exchange of well-fixed components in 398; and group 3, exchange of loose components in 933. We found that the risk of a further cup revision was lower after revision of well-fixed components (relative risk from a Cox model (RR) = 0.56, 95% confidence interval 0.37% to 0.87%) and loose components (RR = 0.56, 95% confidence interval 0.39% to 0.80%), compared with exchange of the liner in isolation. The most frequent reason for a further acetabular revision was dislocation, accounting for 61 (28%) of the re-revisions. Other reasons for further revision included pain in 27 (12%), loosening in 24 (11%) and infection in 20 (9%). Re-revisions because of pain were less frequent when complete component (fixed or loose) revision was undertaken compared with isolated exchange of the liner (RR = 0.20 (95% confidence interval 0.06% to 0.65%) and RR = 0.10 (95% confidence interval 0.03% to 0.30%), respectively). The risk of further acetabular revision for infection, however, did not differ between the groups.

In this study, exchange of the liner only had a higher risk of further cup revision than revision of the complete acetabular component. Our results suggest that the threshold for revising well-fixed components in the case of liner wear and osteolysis should be lowered.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 70 - 70
23 Jun 2023
Muratoglu OK Asik MD Nepple CM Wannomae KK Micheli BR Connolly RL Oral E
Full Access

Majority of ultra-high molecular weight polyethylene (UHMWPE) medical devices used in total joint arthroplasty are crosslinked using gamma radiation to improve wear resistance. Alternative methods of crosslinking are urgently needed to replace gamma radiation due to rapid decline in its supply. Peroxide crosslinking is a candidate method with widespread industrial applications. Oxidative stability and biocompatibility, which are critical requirements for medical device applications, can be achieved using vitamin-E as an additive and by removing peroxide by-products through high temperature melting, respectively. We investigated compression molded UHMWPE/vitamin-E/di-cumyl peroxide blends followed by high-temperature melting in inert gas as a material candidate for tibial knee inserts. Wear resistance increased and mechanical properties remained largely unchanged. Oxidation induction time was higher than most of the other clinically available formulations. The material passed the local-end point biocompatibility tests per ISO 10993. Compounds found in exhaustive extraction were of no concern with margin-of-safety values well above the accepted level, indicating a desirable toxicological risk profile. Peroxide crosslinked, vitamin-E stabilized, and high temperature melted UHMWPE has recently been cleared for clinical use in tibial knee inserts. With all the salient characteristics needed in a material that can provide superior long-term performance in total joint patients, peroxide crosslinking can replace gamma radiation crosslinking of UHMWPE for use in all total joint replacement implant including acetabular liners


Bone & Joint Open
Vol. 4, Issue 11 | Pages 839 - 845
6 Nov 2023
Callary SA Sharma DK D’Apollonio TM Campbell DG

Aims. Radiostereometric analysis (RSA) is the most accurate radiological method to measure in vivo wear of highly cross-linked polyethylene (XLPE) acetabular components. We have previously reported very low wear rates for a sequentially irradiated and annealed X3 XLPE liner (Stryker Orthopaedics, USA) when used in conjunction with a 32 mm femoral heads at ten-year follow-up. Only two studies have reported the long-term wear rate of X3 liners used in conjunction with larger heads using plain radiographs which have poor sensitivity. The aim of this study was to measure the ten-year wear of thin X3 XLPE liners against larger 36 or 40 mm articulations with RSA. Methods. We prospectively reviewed 19 patients who underwent primary cementless THA with the XLPE acetabular liner (X3) and a 36 or 40 mm femoral head with a resultant liner thickness of at least 5.8 mm. RSA radiographs at one week, six months, and one, two, five, and ten years postoperatively and femoral head penetration within the acetabular component were measured with UmRSA software. Of the initial 19 patients, 12 were available at the ten-year time point. Results. The median proximal, 2D, and 3D wear rates calculated between one and ten years were all less than 0.005 mm/year, with no patient recording a proximal wear rate of more than 0.021 mm/year. Importantly, there was no increase in the wear rate between five and ten years. Conclusion. The very low wear rate of X3 XLPE liners with larger articulations remains encouraging for the future clinical performance of this material. Cite this article: Bone Jt Open 2023;4(11):839–845


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 66 - 66
19 Aug 2024
Terhune EB Sutter EG Balkissoon R Pallante GD Specht L Leikin JB Kwon YM Lewallen DG Gerlinger TL Jacobs JJ
Full Access

Ceramic-on-ceramic (CoC) articulations in total hip arthroplasty (THA) have low wear, but the unique risk of fracture. After revision for CoC fracture, ceramic third bodies can lead to runaway wear of cobalt chrome (CoCr) causing extremely elevated blood cobalt. We present five cases of ceramic liner fractures revised to a CoCr head associated with the rapid development of severe cobalt toxicity. We identified 5 cases of fractured CoC THA treated with revision to CoCr on highly cross-linked polyethylene (HXLPE) – three to conventional bearings and two to modular dual mobility bearings (CoCr acetabular liner, CoCr femoral head, and HXLPE). Mean follow up was 2.5 years after CoCr/HXLPE re-revision. Symptoms of cobalt toxicity occurred at average 9.5 months after revision for ceramic fracture (range 6–12). All patients developed vision and hearing loss, balance difficulties, and peripheral neuropathy. Several had cardiomyopathy, endocrinopathy, and local skin discoloration. Two reported hip pain. Re-revision for cobalt toxicity occurred at an average of 22 months (range 10–36) after revision for ceramic fracture. Average serum cobalt level at re-revision was 991 μg/L (range 734–1302, normal <1 μg/L). All CoCr heads exhibited massive wear with asphericity; deep tissues exhibited prominent metallosis. Treatment consisted of debridement and revision to a ceramic head with HXLPE. Serum cobalt improved to an average of 25 μg/L at final follow up. All patients reported partial improvement in vision and hearing; peripheral neuropathy and balance did not recover. Systemic cobalt toxicity is a rare but devastating complication of ceramic fracture in THA treated with cobalt-alloy bearings. Cobalt alloy bearings should be avoided in this setting. The diagnosis of systemic cobalt toxicity requires a high index of suspicion and was typically delayed following systemic symptoms. Debridement and revision to a ceramic-on-HXLPE leads to improvement but not resolution of cobalt toxicity complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2020
Wyles CC Maradit-Kremers H Rouzrokh P Barman P Larson DR Polley EC Lewallen DG Berry DJ Pagnano MW Taunton MJ Trousdale RT Sierra RJ
Full Access

Introduction. Instability remains a common complication following total hip arthroplasty (THA) and continues to account for the highest percentage of revisions in numerous registries. Many risk factors have been described, yet a patient-specific risk assessment tool remains elusive. The purpose of this study was to apply a machine learning algorithm to develop a patient-specific risk score capable of dynamic adjustment based on operative decisions. Methods. 22,086 THA performed between 1998–2018 were evaluated. 632 THA sustained a postoperative dislocation (2.9%). Patients were robustly characterized based on non-modifiable factors: demographics, THA indication, spinal disease, spine surgery, neurologic disease, connective tissue disease; and modifiable operative decisions: surgical approach, femoral head size, acetabular liner (standard/elevated/constrained/dual-mobility). Models were built with a binary outcome (event/no event) at 1-year and 5-year postoperatively. Inverse Probability Censoring Weighting accounted for censoring bias. An ensemble algorithm was created that included Generalized Linear Model, Generalized Additive Model, Lasso Penalized Regression, Kernel-Based Support Vector Machines, Random Forest and Optimized Gradient Boosting Machine. Convex combination of weights minimized the negative binomial log-likelihood loss function. Ten-fold cross-validation accounted for the rarity of dislocation events. Results. The 1-year model achieved an area under the curve (AUC)=0.63, sensitivity=70%, specificity=50%, positive predictive value (PPV)=3% and negative predictive value (NPV)=99%. The 5-year model achieved an AUC=0.62, sensitivity=69%, specificity=51%, PPV=7% and NPV=97%. All cohort-level accuracy metrics performed better than chance. The two most influential predictors in the model were surgical approach and acetabular liner. Conclusions. This machine learning algorithm demonstrates high sensitivity and NPV, suggesting screening tool utility. The model is strengthened by a multivariable dataset portending differential dislocation risk. Two modifiable variables (approach and acetabular liner) were the most influential in dislocation risk. Calculator utilization in “app” form could enable individualized risk prognostication. Furthermore, algorithm development through machine learning facilitates perpetual model performance enhancement with future data input


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 90 - 101
1 Jan 2020
Davis ET Pagkalos J Kopjar B

Aims. The aim of this study was to identify the effect of the manufacturing characteristics of polyethylene acetabular liners on the survival of cementless and hybrid total hip arthroplasty (THA). Methods. Prospective cohort study using linked National Joint Registry (NJR) and manufacturer data. The primary endpoint was revision for aseptic loosening. Cox proportional hazard regression was the primary analytical approach. Manufacturing variables included resin type, crosslinking radiation dose, terminal sterilization method, terminal sterilization radiation dose, stabilization treatment, total radiation dose, packaging, and face asymmetry. Total radiation dose was further divided into G1 (no radiation), G2 (> 0 Mrad to < 5 Mrad), G3 (≥ 5 Mrad to < 10 Mrad), and G4 (≥ 10 Mrad). Results. A total of 5,329 THAs were revised, 1,290 of which were due to aseptic loosening. Total radiation dose, face asymmetry, and stabilization treatments were found to significantly affect implant survival. G1 had the highest revision risk for any reason and for aseptic loosening and G3 and G4 the lowest. Compared with G1, the adjusted hazard ratio for G2 was 0.74 (95% confidence interval (CI) 0.64 to 0.86), G3 was 0.36 (95% CI 0.30 to 0.43), and G4 was 0.38 (95% CI 0.31 to 0.47). The cumulative incidence of revision for aseptic loosening at 12 years was 0.52 and 0.54 per 100 THAs for G3 and G4, respectively, compared with 1.95 per 100 THAs in G1. Asymmetrical liners had a lower revision risk due to aseptic loosening and reasons other than aseptic loosening compared with symmetric (flat) liners. In G3 and G4, stabilization with vitamin E and heating above melting point performed best. Conclusion. Polyethylene liners with a total radiation dose of ≥ 5 Mrad, an asymmetrical liner face, and stabilization with heating above the melting point demonstrate best survival. Cite this article: Bone Joint J 2020;102-B(1):90–101


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 73 - 77
1 Jul 2021
Lawrie CM Barrack RL Nunley RM

Aims. Dual mobility (DM) implants have been shown to reduce the dislocation rate after total hip arthroplasty (THA), but there remain concerns about the use of cobalt chrome liners inserted into titanium shells. The aim of this study was to assess the clinical outcomes, metal ion levels, and periprosthetic femoral bone mineral density (BMD) at mid-term follow-up in young, active patients receiving a modular DM THA. Methods. This was a prospective study involving patients aged < 65 years, with a BMI of < 35 kg/m. 2. , and University of California, Los Angeles activity score of > 6 who underwent primary THA with a modular cobalt chrome acetabular liner, highly cross-linked polyethylene mobile bearing, and a cementless titanium femoral stem. Patient-reported outcome measures, whole blood metal ion levels (μg/l), and periprosthetic femoral BMD were measured at baseline and at one, two, and five years postoperatively. The results two years postoperatively for this cohort have been previously reported. Results. A total of 43 patients were enrolled. At minimum follow-up of five years, 23 (53.4%) returned for clinical and radiological review, 25 (58.1%) had metal ion analysis performed, 19 (44.2%) underwent dual energy x-ray absorptiometry scans, and 25 (58%) completed a pain-drawing questionnaire. The mean modified Harris Hip Scores improved significantly from 54.8 (SD 19) preoperatively to 93.08 (SD 10.5) five years postoperatively (p < 0.001). One patient was revised for aseptic acetabular loosening. The mean cobalt levels increased from 0.065 μg/l (SD 0.03) to 0.08 (SD 0.05) and the mean titanium levels increased from 0.35 (SD 0.13) to 0.78 (SD 0.29). The femoral BMD ratio decreased in Gruen Zone 1 (91.9%) at five years postoperatively compared with the baseline scores at six weeks potoperatively. The femoral BMD ratio was maintained in Gruen zones 2 to 7. Conclusion. The use of a modular DM component and a cementless, tapered femoral stem shows excellent mid-term survivorship with minimal concerns for corrosion and metal ion release in a cohort of young, active patients undergoing primary THA. Cite this article: Bone Joint J 2021;103-B(7 Supple B):73–77


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 28 - 28
1 Nov 2021
Perka C Krull P Steinbrück A Morlock M
Full Access

Special acetabular polyethylene (PE) liners are intended to increase the stability of the artificial hip joint, yet registry studies on them are limited. The pupose of this study was to investigate differences in revision rates for mechanical complications in primary cementless total hip arthroplasty (THA) with standard and special PE acetabular liners in patients with ostheoarthritis. Data from the German Arthroplasty Registry (EPRD) between 2012 until 2020 were analysed. Patients with diagnosed ostheoarthritis of the hip without relevant prior surgeries, who received a primary cementless THA with a ceramic/PE bearing articulation were included. Cumulative incidences of revision for mechanical complications for Standard and 4 special PE liners (Lipped, Increased Offset, Angulated, Angulated|Increased Offset) were determined using the Kaplan-Meier Estimator. Confounding factors were investigated with a Cox proportional-hazards model. In total 151.104 cases were included. 7-year unadjusted revision-free survival for mechanical complications compared to Standard liners (97.7%) was lower for Angulated (97.4%), Lipped (97.2%) and Angulated|Increased Offset liners (94.7%), but higher for Increased Offset liners (98.1%). Risk of revision for mechanical complications was not significantly different between Standard, Lipped and Angulated liners. Increased Offset liners (HR=0.68; 95% CI=0.5–0.92) reduced, while Angulated|Increased Offset liners (HR= 1.81; 95% CI=1.38–2.36) increased the risk. Higher age at admission and an Elixhauser comorbidity index greater zero increased the risk, whereas a larger liner share slightly reduced the risk. Only the use of Increased Offset liners reduced the risk of revision for mechanical complications compared to Standard liners — other special liners did not


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 174 - 179
1 Feb 2007
Kim Y Yoon S Kim J

Our aim in this prospective study was to compare the bone mineral density (BMD) around cementless acetabular and femoral components which were identical in geometry and had the same alumina modular femoral head, but differed in regard to the material of the acetabular liners (alumina ceramic or polyethylene) in 50 patients (100 hips) who had undergone bilateral simultaneous primary total hip replacement. Dual energy X-ray absorptiometry scans of the pelvis and proximal femur were obtained at one week, at one year, and annually thereafter during the five-year period of the study. At the final follow-up, the mean BMD had increased significantly in each group in acetabular zone I of DeLee and Charnley (20% (15% to 26%), p = 0.003), but had decreased in acetabular zone II (24% (18% to 36%) in the alumina group and 25% (17% to 31%) in the polyethylene group, p = 0.001). There was an increase in the mean BMD in zone III of 2% (0.8% to 3.2%) in the alumina group and 1% (0.6% to 2.2%) in the polyethylene group (p = 0.315). There was a decrease in the mean BMD in the calcar region (femoral zone 7) of 15% (8% to 24%) in the alumina group and 14% (6% to 23%) in the polyethylene group (p < 0.001). The mean bone loss in femoral zone 1 of Gruen et al was 2% (1.1% to 3.1%) in the alumina group and 3% (1.3% to 4.3%) in the polyethylene group (p = 0.03), and in femoral zone 6, the mean bone loss was 15% (9% to 27%) in the alumina group and 14% (11% to 29%) in the polyethylene group compared with baseline values. There was an increase in the mean BMD on the final scans in femoral zones 2 (p = 0.04), 3 (p = 0.04), 4 (p = 0.12) and 5 (p = 0.049) in both groups. There was thus no significant difference in the bone remodelling of the acetabulum and femur five years after total hip replacement in those two groups where the only difference was in the acetabular liner