Advertisement for orthosearch.org.uk
Results 1 - 20 of 324
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1393 - 1398
1 Dec 2024
Morris WZ Haider S Hinds ST Podeszwa D Ellis H Osborne L Anable N Sucato D

Aims. There has been limited literature regarding outcomes of acetabular rim syndrome (ARS) with persistent acetabular os in the setting of acetabular dysplasia. The purpose of this study was to characterize a cohort of adolescent and young adult patients with ARS with persistent os and compare their radiological and clinical outcomes to patients with acetabular dysplasia without an os. Methods. We reviewed a prospective database of patients undergoing periacetabular osteotomy (PAO) for symptomatic acetabular dysplasia between January 1999 and December 2021 to identify hips with preoperative os acetabuli, defined as a closed triradiate cartilage but persistence of a superolateral os acetabulum. A total of 14 hips in 12 patients with persistent os acetabuli (ARS cohort) were compared to 50 randomly selected ‘control’ hips without persistent os acetabuli. Preoperative and postoperative radiographs were measured for markers of dysplasia: lateral centre-edge angle, anterior centre-edge angle, acetabular inclination, and migration index. Union of the os was determined in patients with ≥ six months’ follow-up. Patient-reported outcome measures (PROMs) included the University of California, Los Angeles (UCLA) activity score and modified Harris Hip Score (mHHS, maximum score 80) completed at one year postoperatively. Results. There was no significant difference between the ARS and control cohorts with regard to sex distribution (p = 0.270), age at surgery (p = 0.186), or BMI (p = 0.442). Preoperatively, the ARS cohort had more severe dysplasia, including lower lateral centre-edge angle (-9.3° (SD 12.5°) vs 7.6° (SD 10.7°); p < 0.001) and greater acetabular inclination (33.9° (SD 8.2°) vs 21.8° (SD 8.7°); p < 0.001). Postoperatively, 6/13 (46%) hips with ≥ six months of radiological follow up demonstrated union of the os. There was no difference between the ARS and control cohorts at one year in UCLA score (9.1 (SD 1.5) vs 8.2 (SD 1.9); p = 0.167) or mHHS (73.4 (SD 9.5) vs 69.9 (SD 8.8); p = 0.312). Conclusion. ARS with persistent acetabular os may occur in more severe dysplasia. Union occurs in 50% cases following corrective PAO. Cite this article: Bone Joint J 2024;106-B(12):1393–1398


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_III | Pages 540 - 540
1 Aug 2008
Khanduja V Villar RN
Full Access

Aim: The aim of this study was to determine if a correlation exists between the impingement test and the arthroscopic findings at the acetabular rim in non-dysplastic hips. Secondarily, we also wanted to establish if there was a correlation between the pain experienced on the impingement test and the pathology identified. Patients and Methods: Sixty-two consecutive patients who were due to have an arthroscopy of the hip in our unit were prospectively recruited into the study. All the dysplastic hips were excluded from the study. One observer was involved in examining all the patients and another one in performing all the arthroscopies. The impingement test was considered positive if at 90 degrees of flexion, adduction and internal rotation, the patient complained of discomfort or pain. If the patient experienced pain this was described as a strongly positive test and if there was discomfort experienced it was considered as a weakly positive test. The test was performed on the morning of the arthroscopy and all the intra-articular findings recorded at arthroscopy. A tear of the acetabular labrum and chondral damage in the antero-superior margin of the acetabulum were considered as positive pathology at the acetabular rim. Results : There were 40 males and 22 females in the study group. The impingement test was positive in 57 patients, strongly positive in 42 and weakly positive in 15. The arthroscopy revealed positive pathology in terms of an acetabular labrum tear and/or chondral damage at the acetabular rim in 55 patients. A negative test was recorded in 5 patients but there was positive rim pathology in two of these 5 patients. Conclusion: The impingement test correlates positively with the pathology at the acetabular rim; the sensitivity of the test for diagnosing acetabular rim pathology is 96.4 % and the specificity is only 60 % in non-dysplastic hips. However, we did not identify any correlation between the level of pain and the pathology observed


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 10 - 10
1 Mar 2006
Beck M Martinez A Li S Ganz R
Full Access

Radiodense structures resembling ossicles at the acetabular rim have received multiple names including “Os acetabuli, Os supertilii, Os marginale superius acetabuli, and Os coxae quartum”. Various theories regarding their origin have been postulated. These structures commonly are observed in dysplastic hips and hips suffering from femoro-acetabular impingement and represent fractures of the acetabular rim. In our series we observed acetabular rim fragments in 4.9% of the dysplastic hips and in 6.4% of the hips with femoro-acetabular impingement. Two different pathomechanics are responsible for the occurrence of these rim fragments. In dysplasia the short acetabular roof reduces the amount of available loading surface which leads to an overload on the lateral margin of the acetabulum, propagating the development of a fatigue fracture. However, as in all hips additional cysts were visible, it must be postulated, that cysts have to be present additionally and act as stress risers through which the rim bone eventually will fail. In hips with femoro-acetabular impingement the mode of failure is different. The relative anterior overcover in retroverted hips is subjected to stress during flexion of the hip, which is further increased by the frequent presence of an non-spheric extension of the femoral head as seen in cam impingement. The nonspheric femoral head-neck junction is jammed into the rim area. By repetitive traumatization the anterior rim eventually will fracture. The clinical importance of acetabular rim fractures in the dysplastic hip is readily understood even by an unexperienced observer. However, it has to be considered as a sign that the hip has decompensated and it usually goes with significant articular cartilage damage. Because the radiographic appearance of the hip with femoro-acetabular impingement seems normal at first sight, the mechanism leading to anterior rim fracture may be overlooked. However, recognition and adequate treatment is important to prevent further degeneration of the hip


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 242 - 242
1 Jul 2008
VANDENBUSSCHE E SAFFARINI M DELOGE N NOGLER M CAVUS A MOCTEZUMA J
Full Access

Purpose of the study: The anterior rim of the arthroplasty cup can overhang the bone in certain situations: oversized cup, insufficient anteversion, insufficient ace-tabular reaming, cylindrospherical reaming overriding the acetabular opening. The straight or concave shape of the anterior wall of the acetabulum also affects prosthetic overhang. The purpose of this anatomic study was to use a navigation system to quantify, in vitro, the height of the iliopubic psoas notch. Material and methods: Sixty-eight acetabuli from 34 cadaver pelvi free of osteoarthritis (13 male and 21 female) were analyzed using the Stryker™ hip navigation system. Morphological data were collected for mathematical processing which defined the diameter and the center of the articular surface. Results: Considerable intra- and inter-individual differences in the shape of the acetabular rim were noted and quantified, particularly concerning the psoas notch. When the lateral view of the acetabular rim is projected onto a plane it produces a succession of three summits and three valleys explaining the difficulty encountered in obtaining a precise mean plane for the acetabular opening. Discussion: More or less pronounced protrusion of the cup could explain potentially painful anterior impingement of the psoas, especially for certain types of acetabular morphology


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 3 | Pages 423 - 429
1 May 1991
Klaue K Durnin C Ganz R

The acetabular rim syndrome is a pathological entity which we illustrate by reference to 29 cases. The syndrome is a precursor of osteoarthritis of the hip secondary to acetabular dysplasia. The symptoms are pain and impaired function. All our cases were treated by operation which consisted in most instances of re-orientation of the acetabulum by peri-acetabular osteotomy and arthrotomy of the hip. In all cases, the limbus was found to be detached from the bony rim of the acetabulum. In several instances there was a separated bone fragment, or 'os acetabuli' as well. In acetabular dysplasia, the acetabular rim is subject to abnormal stress which may cause the limbus to rupture, and a fragment of bone to separate from the adjacent bone margin. Dysplastic acetabuli may be classified into two radiological types. In type I there is an incongruent shallow acetabulum. In type II the acetabulum is congruent but the coverage of the femoral head is deficient


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 127 - 127
1 Sep 2012
Corten K Etsuo C Leunig M Ganz R
Full Access

Introduction. Ectopic ossification (EO) at the acetabular rim has been suggested to be associated with pincer impingement and to lead to ossification of the labrum. However, this has never been substantiated with histological, radiographic and MRI findings in large cohorts of patients. We hypothesized that it is more a bone apposition of the acetabular rim and that it occurs more frequently in coxa profunda (CP) hips. Materials and Methods. In the first part, a cohort of 20 hips with this suspected ectopic rim ossification (EO) pattern were identified. The radiographic features that could be associated with this ossification pattern were described and evaluated by a histologic examination of intra-operative samples taken from the rim trimming. In the second part, we assessed the prevalence of this ectopic ossification process in a cohort of 203 patients treated for FAI. Results. Histologic examination revealed that new acetabular bone formation was either overgrowing the non-ossified labrum or moving it away from the native rim. Radiologically, this was associated with an “indentation sign” and/or a “double line sign”. There were no specimens that had shown any evidence of labral ossification. EO was found in 26 hips (18%) of the second cohort. Twenty of 26 hips (77%) with EO had CP morphology and 29% of CP hips had EO signs. In contrast, only 6 non-profunda hips (8%) were associated with EO. There was a high correlation between XR and MRI findings as >80% of XR findings were confirmed on MRI. Sixty-nine hips had CP morphology. The double line sign (N = 13), the indentation sign (N = 12) and a prominent lateral rim (N = 11) were found. Hips with an EO pattern were found in patients that were significantly older than those without EO (p = 0.01). The acetabular characteristics of the EO groups were not significantly different from the CP hips without EO. The femoral characteristics were significantly different between groups with lower neck shaft angles (128° vs 134°;p = 0,0002) and shorter femoral necks lengths (62mm vs 65mm; p = 0,04)) in the EO group. The mean Tonnis classification was not significantly different (p = 0,18). In addition, the mean acetabular cartilage degeneration status was not different between both groups (p = 0,9). Rim trimming down to the native acetabular bone was done in all cases either by arthroscopy (N = 40) or open surgical dislocation (N = 17). Discussion. Ectopic ossification of the acetabular rim predominantly occurs in CP and is associated with specific anatomic features of the proximal femur. This type of impingement seems to be different and less aggressive than other described impingement processes. The double line sign and indentation sign are highly indicative for this EO process and are indicative for a longstanding impingement problem. Trimming of the acetabular rim should be conducted


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 42 - 42
1 Sep 2012
Rodriquez-Elizalde SR RavI B Salvati E Lipman J Westrich G
Full Access

Purpose. The effects of Acetabular Rim Osteophytes (ARO) in Total Hip Arthroplasty (THA), has not been quantified. During THA their presence and location is variable, and the effect on post-operative Range of Motion (ROM) is unknown. The purpose of this study was to evaluate the ROM of a modern hip implant in five cadaver models utilizing computerized virtual surgery, and to analyze the effect of AROs given their location on the acetabulum, and position of the prosthesis during motion. Method. CT scans of five cadaveric pelvises and femurs were used to create 3-D Models. Surgery, using virtual Stryker components was then performed to restore the natural anatomic offset and leg length. ROM to impingement was evaluated for each model in eight vectors: flexion/extension, internal/external rotation, abduction/adduction, and 90 degrees of flexion with internal/external rotation. An Osteophyte Impingement Model was then created by elevating the natural acetabular rim by 10 millimeters circumferentially in each virtual cadaver pelvis. Using the same THA components, ROM was then evaluated in this pelvic model and compared to the cadaveric models. Results. ROM in the Osteophyte Impingement Model yielded a statistically significant decrease in five of the eight vectors tested, when compared to the Cadaveric Model: Flexion, Extension, External Rotation, Flexion to 90 degrees with Internal Rotation, and Flexion to 90 degrees with External Rotation. Only 3 of these 5 vectors were within normal human physiological ROM: Flexion, External Rotation, and Flexion to 90 degrees with Internal Rotation. The osteophyte model yielded a decrease in absolute ROM in the following: Flexion to 101 vs 113 degrees (p= 0.03), External Rotation to 30.4 vs 49.5 degrees (p= 0.01), and Flexion to 90 degrees with Internal Rotation 16.7 vs 31.6 degrees (p=0.01). When mapped on the acetabulum of right-sided hip, with the 12 o'clock position as the superior pole of the acetabulum, impingement on the osteophyte was noted at the following locations: with Flexion, and Flexion to 90 degrees with Internal Rotation, impinged was noted between 1 and 2 o'clock on the acetabulum. In External Rotation impinged occurred between 7 and 8 o'clock on the acetabulum. Conclusion. This study showed that a 10 millimeter osteophyte can potentially decrease range of motion and lead to impingement in THA in certain planes of motions: Flexion, External Rotation and Flexion to 90 degrees with Internal Rotation. The location of this impingement is between the 1 and 2 o'clock in Flexion, and Flexion to 90 degrees with Internal Rotation. In External Rotation, the impingement will occur between the 7 and 8 o'clock. The above applies to a right-sided acetabulum, the left side will demonstrate the mirror image of this impingement: Between the 10 to 11 o'clock, and 4 to 5 o'clock positions respectively. Osteophytes 10 millimeters or more in height at these positions should be carefully evaluated intra-operatively and removed safely if possible


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. Methods. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle. Results. In squatting, we found significantly decreased anterior femoroacetabular clearance in painful hips with cam and/or pincer morphologies (mean -11.3° (SD 19.2°)) compared to pain-free hips with cam and/or pincer morphologies (mean 8.5° (SD 14.6°); p = 0.022) and controls (mean 18.6° (SD 8.5°); p < 0.001). In sitting flexion, adduction, and internal rotation, we found significantly decreased anterior clearance in both painful (mean -15.2° (SD 15.3°); p = 0.002) and painfree hips (mean -4.7° (SD 13°); p = 0.010) with cam and/pincer morphologies compared to the controls (mean 7.1° (SD 5.9°)). Conclusion. Our results support the anterior femoroacetabular impingement pathomechanism in hips with cam and/or pincer morphologies and highlight the effect of posture on this pathomechanism. Cite this article: Bone Jt Open 2021;2(11):988–996


Bone & Joint Open
Vol. 2, Issue 10 | Pages 813 - 824
7 Oct 2021
Lerch TD Boschung A Schmaranzer F Todorski IAS Vanlommel J Siebenrock KA Steppacher SD Tannast M

Aims. The effect of pelvic tilt (PT) and sagittal balance in hips with pincer-type femoroacetabular impingement (FAI) with acetabular retroversion (AR) is controversial. It is unclear if patients with AR have a rotational abnormality of the iliac wing. Therefore, we asked: are parameters for sagittal balance, and is rotation of the iliac wing, different in patients with AR compared to a control group?; and is there a correlation between iliac rotation and acetabular version?. Methods. A retrospective, review board-approved, controlled study was performed including 120 hips in 86 consecutive patients with symptomatic FAI or hip dysplasia. Pelvic CT scans were reviewed to calculate parameters for sagittal balance (pelvic incidence (PI), PT, and sacral slope), anterior pelvic plane angle, pelvic inclination, and external rotation of the iliac wing and were compared to a control group (48 hips). The 120 hips were allocated to the following groups: AR (41 hips), hip dysplasia (47 hips) and cam FAI with normal acetabular morphology (32 hips). Subgroups of total AR (15 hips) and high acetabular anteversion (20 hips) were analyzed. Statistical analysis was performed using analysis of variance with Bonferroni correction. Results. PI and PT were significantly decreased comparing AR (PI 42° (SD 10°), PT 4° (SD 5°)) with dysplastic hips (PI 55° (SD 12°), PT 10° (SD 6°)) and with the control group (PI 51° (SD 9°) and PT 13° (SD 7°)) (p < 0.001). External rotation of the iliac wing was significantly increased comparing AR (29° (SD 4°)) with dysplastic hips (20°(SD 5°)) and with the control group (25° (SD 5°)) (p < 0.001). Correlation between external rotation of the iliac wing and acetabular version was significant and strong (r = 0.81; p < 0.001). Correlation between PT and acetabular version was significant and moderate (r = 0.58; p < 0.001). Conclusion. These findings could contribute to a better understanding of hip pain in a sitting position and extra-articular subspine FAI of patients with AR. These patients have increased iliac external rotation, a rotational abnormality of the iliac wing. This has implications for surgical therapy with hip arthroscopy and acetabular rim trimming or anteverting periacetabular osteotomy (PAO). Cite this article: Bone Jt Open 2021;2(10):813–824


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 69 - 69
1 Feb 2020
Hippensteel E Whitaker D Langhorn J
Full Access

Introduction

Retrieval investigations have shown that cracking or rim failure of polyethylene hip liners may occur at the superior aspect of the liner, in the area that engages the locking ring of the shell1. Failure could occur due to acetabular liner/stem impingement and/or improper cup position. Other contributing factors may include high body mass index, patient activity and design characteristics such as polyethylene material properties, thin liner rim geometry and cup rim design. Currently no standard multi-axis simulator methodology exists for high angle rim fatigue testing, although tests have been developed using static uniaxial load frames2. The purpose of this study was to develop a technique to create a clinically relevant rim crack/fracture event on a 4-axis hip simulator, and to understand the contribution of component design and loading and motion parameters.

Method

A method for creating rim fracture in vitro was developed to evaluate implant design features and polyethylene liner materials. Liners were secured into acetabular shells, fixtured in resin mounted at a 55° (in vitro; 65° in vivo) inclination to ensure high load/stress was at the area of interest. Ranges of kinematic and maximum applied load profiles were investigated (parameters summarized in Table 1). Testing was conducted on an AMTI 12-station hip simulator for 0.25–1.0 million cycles or until fracture (lubrication maintained with lithium grease). At completion, liners were cleaned and examined for crack propagation/fracture. Inspection of the impingement site on the opposite rim was also analyzed. Additional assessments included liner disassociation/rock out, deformation of characteristics such as anti-rotation devices and microscopic inspection of high-stress regions.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 22 - 22
1 Feb 2017
Huff D Schwartz B Fitzpatrick C Rullkoetter P
Full Access

INTRODUCTION

Within total hip replacement, articulation of the femoral head near the rim of the acetabular liner creates undesirable conditions leading to a propensity for dislocation[1], increased contact stresses[2], increased load and torque imparted on the acetabular component[3], and increased wear[4]. Propensity for rim loading is affected by prosthesis placement, as well as the kinematics and loading of the patient. The present study investigates these effects.

METHODS

CT scans from an average-sized patientwere segmented for the hemipelvis and femur of interest. DePuy Synthes implant models were aligned in a neutral position in Hypermesh. The acetabular liner was assigned deformable solid material properties, and the remainder of the model was assigned rigid properties.

Joint reaction forces and kinematics of hip flexion were taken from the public Orthoload database to represent ADLs [5]: Active flexion lying on a table, gait, bending to lift and move a load, and sit-stand. The pelvis was fully constrained, while three-degree-of-freedom (3-DOF) forces were applied to the femur. Hip flexion was kinematically-prescribed while internal-external (I-E) and adduction-abduction (Ad-Ab) DOFs were constrained.

Angles of acetabular implant positioning were based on published data by Rathod [6]. Femoral implant position was chosen based on cadaveric in vitro DePuy Synthes measurements of variation in femoral prosthesis position reported previously [7]. Acetabular and Femoral alignment angles were represented for nominal position, as well as positioning + 1σ and + 2σ from the mean in both anteversion and inclination for acetabular components, and both Varus/Valgus and Flexion (angle in sagittal plane) for the femoral component.

The analyses were automated within Matlab to execute 68 finite element analyses in Abaqus Explicit and structured in a DOE style analysis with Cup inclination, Cup version, Stem Flexion, and Stem Varus/Valgus, and Activity as variables of interest (64 runs + 4 centerpoints = 68 analyses).

From a previous study it was known that acetabular component inclination had the greatest effect on contact pressure location [7], so all data were analyzed relative to inclination, allowing other positioning variables to be represented as variation per inclination position. Results are presented as a percentage, with 0% being pole loading and 100% being rim loading, to normalize for head diameter.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 474 - 474
1 Sep 2009
Dong N Li N Schmidt W Kester M Wang A Nogler M Krismer M
Full Access

High tensile stress has been considered as a contributing factor to the rim fracture of polyethylene acetabular cup liner. We performed the 3 D Finite Element Analysis (FEA) to compare the stress patterns at the polyethylene liner rim as a function of polyethylene thicknesses and whether or not rim was supported by the titanium acetabular shell extension. Two 3.1 mm thick generic 52 mm titanium alloy acetabular shells with and without 2 mm high rim support extension were modelled. Six corresponding Ultra High Molecular Weight Polyethylene (UHMWPE) liners with inner bearing diameters ranging from 22 mm to 44 mm and same outer diameters, were fixed in the shells. A 2 450 N load was applied through the corresponding CoCr femoral heads to the rims of liners while the acetabular shells were fixed on the outer spherical surface. The FEA was performed in half body of the assembly. The maximum principal stresses at the rim regions of UHMWPE liners were recorded.

The results showed that in all rim supported conditions, the maximum principal stress were in compressive patterns, a preferred pattern to reduce the potential polyethylene liner fracture. In rim unsupported conditions, the stresses was in tensile on the internal bearing surface when polyethylene liner thickness was bellow 5 mm, or was bellow 9 mm if the average maximum principal stress cross the rim was considered.

We conclude that the metal rim support changes the stress pattern in the rim region of UHMWPE liner to compressive for all liner thicknesses. The stress pattern turns to tensile, or there will be a higher potential for rim fracture, if UHMWPE liner is unsupported and the polyethylene rim thickness is less than 9 mm.

Although components used this study did not include the locking details which add higher stress concentrations, the trend of stress patterns should follow the results found in this study.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 473 - 474
1 Sep 2009
Dong N Li N Thakore M Wang A Manley M Morris H
Full Access

Previous studies suggested the lack of capture wall of acetabular Ultra High Molecular Weight Polyethylene (UHMWPE) liner can significantly increase the risk of hip joint dislocation. To date, the dislocation studies have been focused on the femoral neck impingement models. The purpose of this study was to identify a new Dislocating Force (DF) generated by rim directed joint force alone and investigate the factors to affect the magnitudes of the DF. The 3 D Finite Element Analysis (FEA) models were constructed by (30) 10 mm thick UHMWPE liners with six inner bearing diameters ranging from 22 mm to 44 mm and five capture wall heights in each bearing size from 0 mm to 2 mm. A load of 2 446 N was applied through the corresponding CoCr femoral head to the rim of the liner. The DF was recorded as a function of capture wall height and head diameter. The results were verified by the physical tests of two 28 mm head bearing liners with 0 and 1.5 mm capture wall heights respectively.

The results showed that the highest DF was 1 269N in 0 mm capture wall and 22 mm head. The lowest DF was 171 N in 2 mm capture wall and 44 mm head. The DF decreased as the capture wall and head size increased. When capture wall increased from 0 mm to 1 mm, the DF was reduced more than 50%. Two experimental data points were consistent with the trend of DF curve found in the FEA.

We concluded that the new intrinsic dislocating force DF can be induced by the rim directed joint loading force alone and can reach as high as 51% of the femoral loading force. A capture wall height above 1mm can effectively reduce DF to less than 25% of the joint force. In addition, the larger head diameter also resulted in less DF generation.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 35 - 35
17 Apr 2023
Afzal T Jones A Williams S
Full Access

Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint. Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab). The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point. Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner. This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies


Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims. Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. Methods. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis. Results. The studies assessed different hip conditions like labrum status, the biomechanical effect of the cam, femoral version, acetabular coverage, and the effect of rim trimming. The testing and loading conditions were also quite diverse, and this disparity limits direct comparisons between the different researches. With normal anatomy the mean contact pressures ranged from 1.54 to 4.4 MPa, and the average peak contact pressures ranged from 2 to 9.3 MPa. Labral tear or resection showed an increase in contact pressures that diminished after repair or reconstruction of the labrum. Complete cam resection also decreased the contact pressure, and acetabular rim resection of 6 mm increased the contact pressure at the acetabular base. Conclusion. To date there is no standardized methodology to access hip contact biomechanics in hip arthroscopy, or with the preservation of the periarticular soft-tissues. A tendency towards improved biomechanics (lower contact pressures) was seen with labral repair and reconstruction techniques as well as with cam correction. Cite this article: Bone Joint Res 2023;12(12):712–721


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 49 - 49
11 Apr 2023
Speirs A Melkus G Rakhra K Beaule P
Full Access

Femoroacetabular impingement (FAI) results from a morphological deformity of the hip and is associated with osteoarthritis (OA). Increased bone mineral density (BMD) is observed in the antero-superior acetabulum rim where impingement occurs. It is hypothesized that the repeated abnormal contact leads to damage of the cartilage layer, but could also cause a bone remodelling response according to Wolff's Law. Thus the goal of this study was to assess the relationship between bone metabolic activity measured by PET and BMD measured in CT scans. Five participants with asymptomatic cam deformity, three patients with uni-lateral symptomatic cam FAI and three healthy controls were scanned in a 3T PET-MRI scanner following injection with [18F]NaF. Bone remodelling activity was quantified with Standard Uptake Values (SUVs). SUVmax was analyzed in the antero-superior acetabular rim, femoral head and head-neck junction. In these same regions, BMD was calculated from CT scans using the calibration phantom included in the scan. The relationship between SUVmax and BMD from corresponding regions was assessed using the coefficient of determination (R. 2. ) from linear regression. High bone activity was seen in the cam deformity and acetabular rim. SUVmax was negatively correlated with BMD in the antero-superior region of the acetabulum (R. 2. =0.30, p=0.08). SUVmax was positively correlated with BMD in the antero-superior head-neck junction of the femur (R. 2. =0.359, p=0.067). Correlations were weak in other regions. Elevated bone turnover was seen in patients with a cam deformity but the relationship to BMD was moderate. This study demonstrates a pathomechanism of hip degeneration associated with FAI deformities, consistent with Wolff's law and the proposed mechanical cause of hip degeneration in FAI. [18F]-NaF PET SUV may be a biomarker of degeneration, especially in early stages of degeneration, when joint preservation surgery is likely to be the most successful


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 5 - 5
1 Mar 2021
Mohtajeb M Cibere J Zhang H Wilson D
Full Access

Femoroacetabular impingement (FAI) deformities are a potential precursor to hip osteoarthritis and an important contributor to non-arthritic hip pain. Some hips with FAI deformities develop symptoms of pain in the hip and groin that are primarily position related. The reason for pain generation in these hips is unclear. Understanding potential impingement mechanisms in FAI hips will help us understand pain generation. Impingement between the femoral head-neck contour and acetabular rim has been proposed as a pathomechanism in FAI hips. This proposed pathomechanism has not been quantified with direct measurements in physiological postures. Research question: Is femoroacetabular clearance different in symptomatic FAI hips compared to asymptomatic FAI and control hips in sitting flexion, adduction, and internal rotation (FADIR) and squatting postures?. We recruited 33 participants: 9 with symptomatic FAI, 13 with asymptomatic FAI, and 11 controls from the Investigation of Mobility, Physical Activity, and Knowledge Translation in Hip Pain (IMAKT-HIP) cohort. We scanned each participant's study hip in sitting FADIR and squatting postures using an upright open MRI scanner (MROpen, Paramed, Genoa, Italy). We quantified femoroacetabular clearance in sitting FADIR and squatting using beta angle measurements which have been shown to be a reliable surrogate for acetabular rim pressures. We chose sitting FADIR and squatting because they represent, respectively, passive and active maneuvers that involve high flexion combined with internal/external rotation and adduction/abduction, which are thought to provoke impingement. In the squatting posture, the symptomatic FAI group had a significantly smaller minimum beta angle (−4.6º±15.2º) than the asymptomatic FAI (12.5º ±13.2º) (P= 0.018) and control groups (19.8º ±8.6º) (P=0.001). In the sitting FADIR posture, both symptomatic and asymptomatic FAI groups had significantly smaller beta angles (−9.3º ±14º [P=0.010] and −3.9º ±9.7º [P=0.028], respectively) than the control group (5.7º ±5.7º). Our results show loss of clearance between the femoral head-neck contour and acetabular rim (negative beta angle) occurred in symptomatic FAI hips in sitting FADIR and squatting. We did not observe loss of clearance in the asymptomatic FAI group for squatting, while we did observe loss of clearance for this group in sitting FADIR. These differences may be due to accommodation mechanisms in the active, squatting posture that are not present in the passive, sitting FADIR posture. Our results support the hypothesis that impingement between the femoral head-neck contour and acetabular rim is a pathomechanism in FAI hips leading to pain generation


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 48 - 48
1 Aug 2013
Deep K
Full Access

Introduction. Malalignment of cup in total hip replacement (THR) increases rates of dislocation, impingement, acetabular migration, pelvic osteolysis, leg length discrepancy and polyethylene wear. Many surgeons orientate the cup in the same anteversion and inclination as the inherent anatomy of the acetabulum. The transverse acetabular ligament (TAL) and acetabular rim can be used as a reference. No study has yet defined the exact orientation of the TAL. The aim of this study was to describe the orientation of acetabular margin and compare it with TAL orientation. Materials and Methods. Sixty eight hips with osteoarthritis undergoing THR with computer navigation were investigated. Anterior pelvic plane was registered using anterior superior iliac spines and pubic symphysis. Orientation of the natural acetabulum as defined by the acetabular rim with any osteophytes excised was measured. Since TAL is a rectangular band like structure, three recordings were done for each corresponding to the outer middle and inner margin of the band. All the readings were given by software as radiological anteversion and inclination. Results. All patients were Caucasian, 30 males and 38 females with mean age 67.4 years (SD 9.6) and BMI 30 (SD 5). Inclination was 54.7(SD7.9), 53(SD6.9), 47.5(SD6.8), 42.1(6.7) and anteversion 5.7(SD8.7), 5.4(SD9.9), 9.7(SD9.6), 13.5(SD9.4) for acetabular rim, outer, middle and inner borders of the TAL respectively. For inclination TAL outer border was not significantly different to acetabular rim (mean difference 1.7°, 95%CIs −0.2° to 3.6°, p=0.082) but the middle (mean difference 7.3°, 95%CIs 5.6° to 8.9°) and inner (mean difference 12.6°, 95%CIs 11.0° to 14.2°) borders were (both p<0.001). For anteversion TAL outer border was not significantly different to acetabular rim (mean difference 0.2°, 95%CIs −1.3° to 1.8°, p=0.758) but the middle and inner borders were (mean difference −4.0° 95%CIs −5.5° to −2.5° and −7.9°, 95%CIs −9.6° to −6.1° respectively, both p<0.001). Anteversion for males was significantly lower than females with a mean difference of 4 for the rim and 5.7, 4.8 and 5.1 for the TAL outer, middle and inner margins respectively. Overall 57,53,40&26 of 68 patients had a combined inclination and anteversion of the native acetabulum that fell outside the “safe zone” of Lewinnek with acetabular rim, outer, middle and inner margins of TAL respectively. Compared to Lewinnek safe zones for inclination TAL inner margin performed best with 14.7% outliers and acetabular rim performed worst with 72% outliers. For anteversion TAL inner margin performed best with 25% outliers while outer margin of TAL performed worst with 39.7% outliers. Conclusion. Orientation of the acetabulum differs a lot between individuals. The TAL middle and inner margins differ in orientation as compared to acetabular rim and TAL outer border. TAL inner border provides the best bet for placing the cup in Lewinnek's safe zone. When using the natural acetabular orientation or TAL as a guide, it should not be assumed this will orientate the cup in Lewinnek safe zone although the validity of safe zones itself is questionable. Variation between patients must be taken into account and the difference between males and females, particularly in terms of anteversion, should be considered


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 65 - 65
23 Jun 2023
Koller T Reisinger C Beck M
Full Access

To quantify the acetabular coverage of the femoral head, Lequesne's vertical-center-anterior edge (VCA) angle is used on the false profile view. Lateral coverage is determined by Wiberg's lateral-center-edge (LCE) angle on an ap pelvic view. The delimitation of the weightbearing area is defined by the end of the subchondral sclerosis line for both views. To our knowledge the exact anatomic location of the points used for measurement on the acetabular rim are not known. Six hips from three cadaver pelvises (3 male and 3 female) were investigated. The anterior and lateral points of interested were identified radiographically using fluoroscopy and marked with 1mm ceramic bullets. Standard false profile views and ap pelvic views in neutral inclination and rotation were taken to check the correct location of the ceramic bullets. A CT of each pelvis was made to locate the ceramic bullets and to define the exact anatomic location of the measurement points on the o'clock position. 6 o‘clock was defined as the midpoint between anteroinferior and the posteroinferior rim edges. Values were normalized for a right hip. The mean clockface location for the VCA was 1:33 (range, 1:15 to 1:40) and for the LCE 0:38 (range, 0:20 to 0:50). The LCEA is slightly anterior to the 12 o'clock position and remains useful to quantify the lateral coverage. Surprisingly, the point used for measuring the VCA is only about 30° (1h) anterior of the point used for measuring the LCEA. Its value for determining anterior cover has to be questioned. The discrepancy to other studies in the literature is because this study identifies and measures the end of the weight bearing zone, and not the border of the bony acetabulum


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 70 - 70
19 Aug 2024
Heimann AF Kowal JH Lane PM Amundson AJ Tannast M Murphy SB
Full Access

Mixed Reality has the potential to improve accuracy and reduce required dissection for the performance of peri-acetabular osteotomy. The current work assesses initial proof of concept of MR guidance for PAO. A PAO planning module, based on preoperative computed tomography (CT) imaging, allows for the planning of PAO cut planes and repositioning of the acetabular fragment. 3D files (holograms) of the cut planes and native and planned acetabulum positions are exported with the associated spatial information. The files are then displayed on mixed reality head mounted device (HoloLens2, Microsoft) following intraoperative registration using an FDA-cleared mixed reality application designed primary for hip arthroplasty (HipInsight). PAO was performed on both sides of a bone model (Pacific Research). The osteotomies and acetabular reposition were performed in accordance with the displayed holograms. Post-op CT imaging was performed for analysis. Cutting plane-accuracy was evaluated using a best-fit plane and 2D angles (°) between the planned and achieved supra (SA)- and retroacetabular (RA) osteotomy and retroacetabular and ischial osteotomies (IO) were measured. To evaluate the accuracy of acetabular reorientation, we digitized the acetabular rim and calculated the acetabular opening plane. Absolute errors of planned and achieved operative inclination and anteversion (°) of the acetabular fragment, as well as 3D lateral-center-edge (LCE) angles were calculated. The mean absolute difference between the planned and performed osteotomy angles was 3 ± 3°. The mean absolute error between planned and achieved operative anteversion and inclination was 1 ± 0° and 0 ± 0° respectively. Mean absolute error between planned and achieved 3D LCE angle was 0.5 ± 0.7°. Mixed-reality guidance for the performance of pelvic osteotomies and acetabular fragment reorientation was feasible and highly accurate. This solution may improve the current standard of care by enabling reliable and precise reproduction of the desired acetabular realignment