Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 139 - 139
1 Jul 2014
Ayers D Snyder B Porter A Walcott M Aubin M Drew J Greene M Bragdon C
Full Access

Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral implant stability is essential to long-term success in total hip replacement. Radiostereometric analysis (RSA) provides precise measurements of micromotion of the stem relative to the femur that are otherwise not detectable by routine radiographs. This study characterised micromotion of a tapered, cementless femoral stem and tantalum porous-coated vs. titanium acetabular shells in combination with highly cross-linked UHMWPE or conventional polyethylene liners using radiostereometric analysis (RSA) for 5 years following THR. Patients and Methods. This IRB-approved, prospective, double randomised, blinded study, involved 46 patients receiving a primary THR by a single surgeon. Each patient was randomised to receive a titanium (23) (Trilogy, Zimmer) or tantalum (23) (Modular Tantalum shell, Zimmer) uncemented hemispheric shell and either a highly-crosslinked or conventional polyethylene liner. Tantalum RSA markers were implanted in each patient. All patients had a Dorr A or B femoral canal and received a cementless, porous-coated titanium tapered stem (M/L Taper, Zimmer). All final femoral broaches were stable to rotational and longitudinal stress. RSA examinations, Harris Hip, UCLA, WOMAC, SF-12 scores were obtained at 10 days, 6 months, and annually through 5 years. Results. All patients demonstrated statistically significant improvement in Harris Hip, WOMAC, and SF-12 PCS scores post-operatively. Evaluation of polyethylene wear demonstrated that median penetration measurements were significantly greater in the conventional compared to the HXPLE liner cohorts at 1 year through 5 years follow-up (p<0.003). At 5 years, conventional liners showed 0.38 ± 0.05mm vertical wear whereas HXLPE liners showed 0.08 ± 0.02mm (p<0.003). Evaluation of the femoral stems demonstrated that the rate of subsidence was highest in the first 6 months (0.09mm/yr), with no other detectable motion through 5 years. Two outlying patients had significantly higher stem subsidence values at 6 months (0.7 mm and 1.0mm). One stem stabilised without further subsidence after 6 months (0.7mm), and the other stem stabilised at 1 year (1.5mm). Neither patient has clinical evidence of loosening. Evaluation of acetabular shells demonstrated less median vertical translation in tantalum than titanium shells at each time-point except at 3-years follow-up, however due to large standard errors, there was no significant difference between the two designs (p>0.05). These large standard errors were predominantly caused by two outliers, neither of which had clinical evidence of loosening. Discussion/Conclusion. In this RSA study of young THR patients, cementless tapered femoral stems, highly crosslinked polyethylene liners, and tantalum or titanium acetabular shells all demonstrated excellent performance through 5 years follow-up. Highly crosslinked polyethylene liners demonstrated significantly less wear than conventional liners. The femoral stem showed excellent stability through 5 years, with no clinical or radiologic episodes of failure. The small amount of micromotion seen is less than that previously reported for similar tapered, cementless stems and approaches the accuracy of RSA (0.05mm). Both acetabular shells demonstrated excellent stability with minimal micromotion at 5 years without significant differences in migration. All patients demonstrated significant clinical improvement in pain and function and additional RSA evaluation of these patients is planned


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 143 - 143
1 Jul 2014
Schroeder D Durham S Elliott M
Full Access

Summary Statement. A new 28mm-diameter ceramic-on-ceramic (COC) acetabular bearing couple (Biomet Orthopedics) showed extremely low wear, even under adverse microseparation conditions∗. The wear results are similar or more favorable than those reported for clinical retrievals and wear testing of similar ceramic bearings. Introduction. A new acetabular shell and ceramic insert design (Biomet) incorporates features to help prevent malalignment during implantation, while still providing secure fixation within the acetabular shell. The incorporation of Biolox. ®. Delta (zirconia toughened alumina, CeramTec) material should provide improved wear resistance over pure alumina ceramics. The goal of this study is to evaluate the wear durability of this system for standard and microseparation testing. Materials & Methods. The 28 mm diameter ceramic heads and inserts (CeramTec) were seated on taper spigots and within acetabular shells (Biomet), respectively. Six sets of parts were tested for 5M cycles of standard hip wear testing (ISO 14242) and an additional six sets of parts for 2M cycles of microseparation testing. The microseparation testing protocol included a steep cup angle (60° in-vivo), side load, and reduced axial load to induce head-liner separation. The lateral displacement was increased from 0.5mm, to 1mm, and then to 2mm in order to replicate wear features observed in extreme situations of clinical retrievals. [1]. The parts were weighed (gravimetric wear rates) and photographed throughout the test. SEM, transformation, and wear debris analyses were completed. Results. The steady-state wear rate throughout standard testing was 0.0094 +/− 0.0029 mm. 3. /10. 6. cycles (+/-95% CI). The initial 0.5mm microseparation distance (0–1M cycles) showed no signs of wear. Most heads showed wear stripes after increasing to 1.0mm (1–1.5M cycles), and then all test parts showed stripes after increasing to 2mm. The increased visibility in wear stripes correlated with an increased level of measured wear. For the 2mm separation-distance testing interval, the wear rate was 0.178 +/− 0.052mm. 3. /10. 6. cycles. Discussion/Conclusion. The lack of wear stripes during 0.5mm of microseparation is an indication of the strength of the implants. A distance of 1–2mm is an extreme level of microseparation and the 60° in-vivo cup inclination created an even worse-case situation for wear; however, the implants showed excellent mechanical strength and low wear rates. SEM and transformation analyses showed minimal wear and evidence of stress-induced ceramic toughening. Microseparation testing at another lab . [2]. has shown a similarly low wear rate (0.5 mm. 3. /10. 6. cycles) for Biolox. ®. Delta ceramic, with Biolox. ®. Forte (alumina ceramic, without zirconia) showing a considerably higher wear rate (6.3mm. 3. /10. 6. cycles). The standard testing wear rate (0.0094+/-0.0029 mm. 3. /10. 6. cycles) was much lower than the average wear rate (0.69+/-0.63 mm. 3. /10. 6. cycles) of several COC implant retrievals by Walter . [1]. The 28mm steady-state wear rate of this test is better than or equal to the wear rate (0.0101 mm. 3. /10. 6. cycles) observed in other 28mm COC systems.∗∗. ∗Ceramic-on-Ceramic articulation is not cleared for use in the United States. ∗∗Laboratory results are not necessarily indicative of clinical performance


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 11 - 11
1 Apr 2018
Kwong L Billi F Keller S Kavanaugh A Luu A Ward J Salinas C Paprosky W
Full Access

Introduction. The objective of this study was to compare the performance of the Explant Acetabular Cup Removal System (Zimmer), which has been the favored system for many surgeons during hip revision surgery, and the new EZout Powered Acetabular Revision System (Stryker). Methods. 54mm Stryker Trident® acetabular shells were inserted into the foam acetabula of 24 composite hemi-pelvises (Sawbones). The hemi-pelvises were mounted on a supporting apparatus enclosing three load cells. Strain gauges were placed on the hemipelvis, on the posterior and the anterior wall, and on the internal ischium in proximity to the acetabular fossa. A thermocouple was fixed onto the polar region of the acetabular component. One experienced orthopaedic surgeon and one resident performed mock revision surgery 6 times each per system. Results. Statistical analysis was conducted using Tukey's range test (HSD). The maximum force transferred to the implant was more than 4X lower with the EZout System regardless the surgeon experience (p=1.0E-08). Overall, recorded strains were lower for the EZout System with the higher decrease in strain (5X) observed at the posterior wall region(p=2E-08). The temperature at the interface was higher for the EZout System but never more than 37°C. Total removal time was on average reduced by a third with the EZout System (p=0.01). The calculated torque was lower for the EZout System. The amount of foam left on the cup after removal, which mimics the compromised bone, was 2.5X higher on average for the Explant System with most of the foam concentrated in the polar region. Lastly, it was observed that the polar region of each implant was reached by rotating the EZout System handpiece within a very narrow cylinder of space centered along the axis of the acetabular component compared to the Explant System, which required movement of the pivoting osteotomes within a large cone-shaped operating envelope. Discussion. Quantitatively, the EZout System required lower force, producing lower strains in the surrounding composite bone. Higher impact forces and associated increased strains may increase fracture risk. Qualitatively, the Explant System required a greater cone of movement than the EZout System requiring more space for the surgeon to leverage the handle of the tool. In addition, both surgeon and resident felt substantially greater exhaustion after using the Explant System vs. the EZout System. The resident compensated for the increased workload of the Explant with time, the experienced surgeon with force. The learning curve for both experienced surgeon and resident was also much shorter with the EZout System as shown by the close force values between the experienced surgeon and resident. Conclusion. Based on the results of this in vitro model, the EZout Powered Acetabular Removal System may be a reasonable alternative to manual removal techniques


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 839 - 845
1 Jun 2007
Barsoum WK Patterson RW Higuera C Klika AK Krebs VE Molloy R

Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater internal rotation before impingement occurred, but decreases the amount of external rotation. A decrease in abduction of the acetabular components increased internal rotation while decreasing external rotation. Although some correction for malposition was allowable on the opposite side of the joint, extreme degrees could not be corrected because of bony impingement.

We introduce the concept of combined component position, in which anteversion and abduction of the acetabular component, along with femoral anteversion, are all defined as critical elements for stability.