Extensor mechanism disruption in total knee arthroplasty (TKA) occurs infrequently but often requires surgical intervention. We compared two cohorts undergoing extensor mechanism
Introduction. Chronic ruptures of the quadriceps tendon after total knee arthroplasty (TKA) are rare but are a devastating complication. The objective of this study was to validate the use of fresh frozen total fresh quadriceps tendon allografts for quadriceps tendon reconstruction. The hypothesis of this work was that the graft was functional in more than 67% of cases, a higher percentage than the results of conventional treatments. Material – methods. We designed a continuous monocentric retrospective study of all patients operated on between 2009 and 2017 for a chronic rupture of the quadriceps tendon after TKA by quadriceps
Introduction. A deficient abductor mechanism leads to significant morbidity and few studies have been published describing methods for reconstruction or repair. This study reports the reconstruction of hip abductor deficiency using human allograft. Methods. All patients were identified as having deficient abductor mechanisms following total hip arthroplasty through radiographic assessment, MRI, clinical examination and intra-operative exploration. All patients underwent hip abductor reconstruction using a variety of human allografts including proximal humeral, tensor fascia lata, quadriceps and patellar tendon. The type of
Chronic extensor mechanism insufficiency around TKA is a very challenging pathology to treat. An insufficient extensor mechanism negatively affects implant survival and patient outcomes. There are several risk factors for extensor mechanism disruption and the surgeon should be aware and avoid these problems in the perioperative period. In appropriately selected patients, reconstruction of the extensor mechanism is a valid option. Whole extensor mechanism and Achilles tendon
INTRODUCTION.
Purpose. The management of moderate to large engaging Hill-Sachs lesions is controversial and surgical options include remplissage,
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a suboptimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two stage revision with antibiotic loaded cement during the interval period and parental antibiotic therapy for six weeks. Single stage revision may have economic and functional advantages, however. We have devised a protocol that dictates the type of revision to be undertaken based on host, organism and local factors. Our protocol has included single stage revision using antibiotic loaded cement in both THA and TKA. This was only undertaken when sensitive organisms were identified pre-operatively by aspiration and appropriate antibiotics were available to use in cement. Patients with immunocompromise, multiple infecting organisms or recurrent infection were excluded. Patients with extensive bone loss that required
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a suboptimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two-stage revision with antibiotic loaded cement during the interval period and parental antibiotic therapy for six weeks. Single stage revision may have economic and functional advantages however. We have devised a protocol that dictates the type of revision to be undertaken based on host, organism and local factors. Our protocol has included single stage revision using antibiotic loaded cement in both THA and TKA. This was only undertaken when sensitive organisms were identified pre-operatively by aspiration and appropriate antibiotics were available to use in cement. Patients with immunocompromise, multiple infecting organisms or recurrent infection were excluded. Patients with extensive bone loss that required
Acetabular reconstruction of extensive bone defect is troublesome in revision total hip arthroplasty (rTHA). Kerboull or Kerboull type reinforcement acetabular device with allobone grafting has been applied since 1996. Clinical results of the procedure were evaluated. Patients. One hundred and ninety-two consecutive revision total hip arthroplasties were performed with allograft bone supported by the Kerboull or Kerboull type reinforcement acetabular device from 1996 to 2009. There were 23 men and 169 women. Kerboull plates were applied to 18 patients, and Kerboull type plates to 174. The mean follow up of the whole series was 8 years (4–18years). Surgical Technique. The superior bone defect was reconstructed principally by a large bulky allo block with plate system. Medial bone defect was reconstructed by adequate bone chips and/or sliced bone plates. After temporally fixation of bulky bone block with two 2.0mm K-wires, it was remodeled by reaming to fit the gap between host bone and plate, followed by fixation to the iliac bone by screws. Finally, residual space of the defect between host bone and the fixed plated was filled up with morselized cancellous bones, bone chips, and/or wedged bony fragments with impaction. This method was sufficiently applicable to AAOS Typeâ�, II, and III bone defects. In case of AAOS Typeâ�£, the procedure was also available after repairing discontinuation between distal and proximal bones by reconstrusion plate or allografting with tibial bone plates or sliced femoral head. Results. Nine patients (4.7%) required revision surgery (infection 5, breakage 3, and malalignment 1). The plate breakage was observed in 8 joints (4.2%). Three patients had no symptoms after the breakage. Three required revision, but the other cases were carefully observed without additional surgical intervention. Ten-year survival rate by Kaplan-Meier method was 96.6% when the endpoint was set revision by asceptic loosning. Conclusions. This study indicated that acetabular
There is a difference between “functional instability” of a total knee arthroplasty (TKA) and a case of “TKA instability”. For example a TKA with a peri-prosthetic fracture is unstable, but would not be considered a “case of instability”. The concept of “stability” for a TKA means that the reconstructed joint can maintain its structure and permit normal motion and activities under physiologic loads. The relationship between stability and alignment is that stability maintains alignment. Instability means that there are numerous alignments and almost always the worst one for the loading condition. In the native knee, “instability” is synonymous with ligament injury. If this were true in TKA, then it would be reasonable to treat every “unstable TKA” with a constrained implant. But that is NOT the case. If the key to successful revision of a problem TKA is understanding (and correcting) the specific cause of the problem, then deep understanding of why the TKA is unstable is essential. A case of true “instability” then, is the loss of structural integrity under load as the result of problems with soft tissue stabilizing structures and/or the size or position of components. It is rare that ligament injury alone is the sole cause of instability (valgus instability invariably involves valgus alignment; varus instability usually means some varus alignment and compromised lateral soft tissues). There will be forces (structures) that create instability and forces (structures) that stabilise. There are three categories of instability: Varus-valgus or coronal: Assuming that the skeleton, implant and fixation are intact. These are usually cases that involve ligament compromise, but the usual cause is CORONAL ALIGNMENT, and this must be corrected. The ligament problem is best solved with mechanical constraint. Gait disturbances that increase the functional alignment problems (hip abductor lurch causing a valgus moment at the knee, scoliosis) may require attention of additional compensation with re-alignment. Plane of motion: Both fixed flexion contractures and recurvatum may result in buckling. The first by exhaustion of the quadriceps (consider doing quadriceps “lunges” with every step) and the second because recurvatum is usually a compensation for extensor insufficiency. The prototype for understanding recurvatum has always been polio. This is perhaps one of the most difficult types of instability to treat. The glib answer has been a hinged prosthesis with an extensor stop but there are profound mechanical reasons why this is flawed thinking. The patient with recurvatum instability due to neurologic compromise of the extensor should be offered an arthrodesis, which they will likely decline. The simpler problem of recurvatum secondary to a patellectomy will benefit from an
Massive bone loss on both the femur and tibia during revision total knee arthroplasty (TKA) remains a challenging problem. Multiple solutions have been proposed for small osseous defects, including morselised cancellous bone grafting, small-fragment structural allograft, thicker polyethylene inserts, and the use of modular augments attached to revision prosthetic designs. Large osseous defects can be treated with structural allografts, impaction bone-grafting with or without mesh augmentation, custom prosthetic components, and specialised hinged knee components. The metaphyseal area of the distal femur and proximal tibia is a particularly attractive option during revision TKA given that it is usually undamaged and well-vascularised. While multiple reconstructive options have been recommended, porous tantalum metaphyseal cones have the advantage of improved biologic fixation because of their high porosity (75–80%), interconnected pore space, and low modulus of elasticity (3 MPa) similar to that of cancellous bone. Such features allow tantalum cones to fill bone defects while tolerating physiological loads. Indications for porous tantalum metaphyseal cones include patients with Anderson Orthopaedic Research Institute Type 2B or greater defects. The surgical technique is simpler than structural
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a suboptimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two-stage revision with antibiotic-loaded cement during the interval period and parental antibiotic therapy for six weeks. Single-stage revision may have economic and functional advantages however. We have devised a protocol that dictates the type of revision to be undertaken based on host, organism and local factors. Our protocol has included single-stage revision using antibiotic-loaded cement in both THA and TKA. This was only undertaken when sensitive organisms were identified pre-operatively by aspiration and appropriate antibiotics were available to use in cement. Patients with immunocompromise, multiple infecting organisms or recurrent infection were excluded. Patients with extensive bone loss that required
INTRODUCTION. Bone tumour resection and subsequent reconstruction remains challenging for the surgeon. Obtaining adequate margins is mandatory to decrease the risk of local recurrence. Improving surgical margins quality without excessive resection, reducing surgical time and increasing the quality of the reconstruction are the main goals of today's research in bone tumour surgical management. With the outstanding improvements in imaging and computerised planning, it is now a standard. However, surgical accuracy is essential in orthopaedic oncologic surgery (Grimmer 2005). Patient specific instruments (PSI) may greatly improve the surgeon's ability to achieve the targeted resection. Thanks to its physical support, PSI can physically guide the blade yielding to a better control over the cutting process (Wong, 2014). Surgical time might significantly be reduced as well when compared to conventional method or navigated procedure. Finally, reconstruction may gain in rapidity and quality especially when allograft is the preferred solution as PSI can be designed as well for allograft cutting (Bellanova, 2013). Since 2011, PSI have systematically been used in our institution for bone tumour resection and when applicable
Aim:. Historically, anterior decompression followed by posterior fusion has been the surgical management of choice in spinal tuberculosis. Due to theatre time being at a premium, we have evolved to performing anterior only debridement,
The infected joint arthroplasty continues to be a very challenging problem. Its management remains expensive, and places an increasing burden on health care systems. It also leads to a long and difficult course for the patient, and frequently a sub optimal functional outcome. The choice of a particular treatment program will be influenced by a number of factors. These include the acuteness or chronicity of the infection; the infecting organism(s), its antibiotic sensitivity profile and its ability to manufacture glycocalyx; the health of the patient; the fixation of the prosthesis; the available bone stock; and the particular philosophy and training of the surgeon. For most patients, antibiotics alone are not an acceptable method of treatment, and surgery is necessary. The standard of care for established infection is two stage revision with antibiotic loaded cement during the interval period and parental antibiotic therapy for six weeks. Single stage revision may have economic and functional advantages however. We have devised a protocol that dictates the type of revision to be undertaken based on host, organism and local factors. Our protocol has included single stage revision using antibiotic loaded cement in both THA and TKA. This was only undertaken when sensitive organisms were identified preoperatively by aspiration and appropriate antibiotics were available to use in cement. Patients with immunocompromise, multiple infecting organisms or recurrent infection were excluded. Patients with extensive bone loss that required
Introduction. When using press-fit stems in revision total knee arthroplasty (TKA), diaphyseal engagement optimizes stability. Attempts to maximize press fit may lead to periprosthetic fracture; however, the literature offers no guidance regarding the prevalence or management of this complication. The purpose of this study is to report the incidence, risk factors, and outcomes of these fractures. Methods. 634 Stemmed implants (307 femoral and 327 tibial) from 413 consecutive revision TKAs were reviewed. Immediate and 6 week post-operative radiographs were examined. Patient age, gender, stem length, diameter, and offset were evaluated as potential risk factors for fracture occurrence using a paired t-test for continuous and a chi-square analysis for categorical variables. Results. 15 Periprosthetic fractures (2.4%) were identified including two femoral (0.65%) and 13 tibial (4.0%). 10 Fractures were non-displaced, 3 had cortical displacement <2mm, and 2 were displaced >2mm. 1 Femur fracture was recognized and fixed intra-operatively with cables. 11 patients with non or minimally displaced fractures were allowed to bear weight as tolerated and 2 were protected for 2 weeks. 1 Displaced fracture was braced for 3 months, while the other was casted for concomitant extensor
Prior to the 1970s, almost all bone sarcomas were treated by amputation. The first distal femoral resection and reconstruction was performed in 1973 by Dr Kenneth C Francis at the Memorial Sloan-Kettering Cancer Centre in New York. Since that time, limb-sparing surgery for primary sarcoma has become the mainstay of sarcoma surgery throughout the world. Initially, the use of mega-prostheses of increasing complexity, involving all the major long bones and both pelvic and shoulder girdles, was popularised. In the early 1980s, wide use of massive
Adamantinoma are rare, low grade malignant, bone tumors, making up only 0.1–0.48 percent of primary malignant bone tumors. They occur predominantly in the long bones, especially the tibia. Histogenetically it is thought that it originates from embryological displacement of basal epithelium of the skin, although other hypotheses have been proposed. Clinically most patients present with swelling and possible bending of the tibia, painful or painless. It's often noticed in an earlier stadium, but symptoms are non-specific and have a slow progressive character. Median patient age is 25 to 35 years, with a range from two to 86 years. It is slightly more common in men than woman, with a ratio of 5:4. Occurrence in children is even rarer. A study by Van Rijn et al. finds only 119 references, and presents six more cases. Treatment is the same. An MRI-scan should be performed to check for metastasis, loco regional staging and for operative planning. Operative excision and reconstruction is necessary to prevent metastasis and maintain load bearing capacity. Generally these resections and reconstructions are done without objective measurements. The surgeon uses a rule of thumb, like a sculptor, or ruler approach to recreate the excised bone, either with allo- or autograft materials. An optimal fit, i.e. a minimal space between tibia and graft, is not always achieved, possibly resulting in pathological fractures. This risk of pathological fractures lengthens recovery time. The fractures elongate hospitalization time and recovery time and are a heavy burden to patients. Computer assisted surgery (CAS) systems, used for example in prosthesis placement, offer objective measurements in 3d space of hard structures with high accuracy. These can be used to produce an accurate copy of the resected bone. If the reconstruction accurately fits the bone defect that's left after the resection, it's likely that the occurrence of pathological fractures decreases. An adamantinoma in the tibia of a 12 year old boy was treated. Surgery consisted of hemicortical resection and inlay
Treatment of Paprosky type 3A and 3B defects in revision surgery of a hip arthroplasty is challenging. In previous cases such acetabular defects were treated with massive structural