Introduction. Functional Spine Units (FSUs) play a vital role in understanding biomechanical characteristics of the spine, particularly bone fracture risk assessment. While established models focus on simulating axial compression of individual bones to assess fracture load, recent models underscore the importance of understanding fracture load within FSUs, offering a better representation of physiological conditions. Despite the limited number of FSU fracture studies, they predominantly rely on a linear material model with an
The detailed biomechanical mechanism of
Aims. CRP is an acute-phase protein that is used as a biomarker to follow severity and progression in infectious and inflammatory diseases. Its pathophysiological mechanisms of action are still poorly defined. CRP in its pentameric form exhibits weak anti-inflammatory activity. The monomeric isoform (mCRP) exerts potent proinflammatory properties in chondrocytes, endothelial cells, and leucocytes. No data exist regarding mCRP effects in human intervertebral disc (IVD) cells. This work aimed to verify the pathophysiological relevance of mCRP in the aetiology and/or progression of IVD degeneration. Methods. We investigated the effects of mCRP and the signalling pathways that are involved in cultured human primary
Discogenic low back pain is a common cause of disability, but its pathogenesis is poorly understood. We collected 19 specimens of lumbar intervertebral discs from 17 patients with discogenic low back pain during posterior lumbar interbody fusion, 12 from physiologically ageing discs and ten from normal control discs. We investigated the histological features and assessed the immunoreactive activity of neurofilament (NF200) and neuropeptides such as substance P (SP) and vasoactive-intestinal peptide (VIP) in the nerve fibres. The distinct histological characteristic of the painful disc was the formation of a zone of vascularised granulation tissue from the nucleus pulposus to the outer part of the
A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending. An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test). The new model retained a high level of cell viability after three weeks of in vitro culture (outer
Purpose: Quantitative MRI is currently being tested as an early and non-invasive diagnostic tool of disc problems prior to the appearance of symptoms. The aim of the present study was to determine the effects of cyclic loading and enzymatic digestion on quantitative MRI, biochemical composition, and mechanical properties of intervertebral disc tissue. Methods: Bovine tail segments consisting of three discs were subjected to 16h of cyclic compression loading (50N–300N–50N at 1Hz) or left unloaded for 16h while in saline solution at 37°C. Prior to loading, the nucleus pulposus were injected with either a trypsin or buffer solution. MR examinations were carried out in a 1.5T Siemens` Avanto system to measure T1 and T2 relaxation times, magnetization transfer ratio (MTR), and trace of the apparent diffusion coefficient (TrD). The nucleus pulposus and
Introduction and Objective. Low back pain (LBP) is a major cause of long-term disability in adults worldwide and it is frequently attributed to intervertebral disc (IVD) degeneration. So far, no consensus has been reached regarding appropriate treatment and LBP management outcomes remain disappointing. Spine unloading or traction protocols are common non-surgical approaches to treat LBP. These treatments are widely used and result in pain relief, decreased disability or reduced need for surgery. However, the underlying mechanisms -namely, the IVD unloading mechanobiology- have not yet been studied. The aim of this first study was to assess the feasibility of IVD unloading in a large animal organ culture set-up and evaluate its impact on mechanobiology. Materials and Methods. Bovine tail discs (diameter 16.1 mm ± 1.2 mm), including the endplates, were isolated and prepared for culture. Beside the day0 sample that was processed directly, three other discs were cultured for 3 days and processed on day4. One disc was loaded in the bioreactor according to a previously established physiological (compressive) loading protocol (2h/day, 0.2Hz). The two other discs were embedded in biocompatible resin, leaving the cartilage endplate free to permit nutrient diffusion, and fitted in the traction holder; one of these discs was kept in free swelling conditions, whereas the second was submitted to cyclic traction loading (2h/day, 0.2Hz) corresponding to 30% of the animal body weight corrected for organ culture. Results. The cell viability assessed on lactate dehydrogenase and ethidium homodimer stained histological slides was not different between the three cultured discs. This means that the disc viability was not affected neither by the embedding, nor by the traction itself. Compared to the physiologically loaded disc, the gene expression of COL1, COL2 and ACAN was higher in the nucleus pulposus and inner
Objectives. Studies which consider the molecular mechanisms of degeneration and regeneration of cartilaginous tissues are seriously hampered by problematic ribonucleic acid (RNA) isolations due to low cell density and the dense, proteoglycan-rich extracellular matrix of cartilage. Proteoglycans tend to co-purify with RNA, they can absorb the full spectrum of UV light and they are potent inhibitors of polymerase chain reaction (PCR). Therefore, the objective of the present study is to compare and optimise different homogenisation methods and RNA isolation kits for an array of cartilaginous tissues. Materials and Methods. Tissue samples such as the nucleus pulposus (NP),
Objectives. Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and
Monomeric C reactive protein (mCRP) presents important proinflammatory effects in endothelial cells, leukocytes, or chondrocytes. However, CRP in its pentameric form exhibits weak anti-inflammatory activity. It is used as a biomarker to follow severity and progression in infectious or inflammatory diseases, such as intervertebral disc degeneration (IVDD). This work assesses for the first time the mCRP effects in human intervertebral disc cells, trying to verify the pathophysiological relevance and mechanism of action of mCRP in the etiology and progression of IVD degeneration. We demonstrated that mCRP induces the expression of multiple proinflammatory and catabolic factors, like nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX2), matrix metalloproteinase 13 (MMP13), vascular cell adhesion molecule 1 (VCAM1), interleukin (IL)-6, IL-8, and lipocalin 2 (LCN2), in human
Introduction: The evidence of genetic background as an important causative factor in disc degeneration and osteoporosis is increasing. Defects in the COL2A1 gene coding for type II collagen are known to lead to disturbed chondrogenesis and ossification. Retardation of growth, abnormal shape of vertebral bodies and intervertebral discs and occult spina bifida have been described in young mice with the defect. How the gene defect is manifested later in life has not been described. Purpose of the study: The purpose of this study was to describe, at the microscopic level, the structure of intervertebral discs of transgenic Del1 mice carrying a deletion mutation in the Col2a1 gene, and the effect of the gene defect on the structural properties of bone. In addition, we wanted to see how the gene defect manifests in disc tissue and skeletal bone later in life and if there were differences between sexes. Materials and methods: The study material consisted of transgenic male (n=27) and female (n=21) mice and their age-matched littermate controls (n=22 and 21, respectively). The transgenic mice were offspring of the transgenic founder mouse Del1 harbouring six copies of a mouse type II collagen transgene with a 150-bp deletion. The mice were divided into two age groups, the younger group being 3 to 13 months and the older 15 to 21 months of age. The two major macromolecules of the intervertebral discs, proteoglycans (PGs) and collagen, were studied. The PG concentration of the intervertebral discs’ nucleus pulposus,
Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The immunohistochemical presence of galectin-4 correlated with histopathological and clinical degeneration scores of patients, whereas galectin-8 did not show significant correlations. The specimens were separated into
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the
Introduction. Low back pain (LBP) is a worldwide leading cause of disability. This preclinical study evaluated the safety of a combined advanced therapy medicinal product developed during the European iPSpine project (#825925) consisting of mesendoderm progenitor cells (MEPC), derived from human induced pluripotent stem cells, in combination with a synthetic poly(N-isopropylacrylamide) hydrogel (NPgel) in an ovine intervertebral disc degeneration (IDD) model. Method. IDD was induced through nucleotomy in 4 adult sheep, 5 lumbar discs each (n=20). After 5 weeks, 3 alternating discs were treated with NPgel (n=6) or NPgel+MEPC (n=6). Before sacrifice, animals were subjected to: MRI of lumbar spines (disc height and Pfirmann grading); blood sampling (hematological, biochemical, metabolic and lymphocyte/monocytes immunological). After 3 months the sheep were sacrificed. The spines were processed for: macroscopic morphology (Thompson grading), microscopic morphology (Histological grading), and glycosaminoglycan content (GAG, DMMB Assay). Furthermore, at sacrifice biodistribution of human MEPC was assessed by Alu-sequences quantification (qPCR) from three tissue samples of heart, liver, spleen, brain, lungs, and kidneys, and PBMCs collected to assess activation of systemic immune cells. To each evaluation, appropriate statistical analysis was applied. Result. Flow cytometry showed no induction of systemic activation of T cells or monocytes. Alu quantification did not give detection of any cells in any organ. Disc height index was slightly increased in discs treated with NPgel+MEPC. Pfirmann's and Thompson's classification showed that treatment with NPgel or NPgel+MEPC gave no adverse reactions. Histological grading showed similar degeneration in vertebrae treated with NPgel+MEPC or with NPgel alone. The amount of GAG was significantly increased in the nucleus pulposus following treatment with NPgel+MEPC compared to NPgel alone, in which a decrease was observed compared to untreated discs in both nucleus pulposus and
Introduction. Intervertebral disc degeneration has been associated with low back pain (LBP) which is a major cause of long-term disability worldwide. Observed mechanical and biological modifications have been related to decreased water content. Clinical traction protocols as part of LBP management have shown positive outcomes. However, the underlying mechanical and biological processes are still unknown. The study purpose was to evaluate the impact of unloading through traction on the mechanobiology of healthy bovine tail discs in culture. Method. We loaded bovine tail discs (n=3/group) 2h/day at 0.2Hz for 3 days, either in dynamic compression (-0.01MPa to -0.2MPa) or in dynamic traction (-0.01MPa to 0.024MPa). In between the dynamic loading sessions, we subjected the discs to static compression loading (-0.048MPa). We assessed biomechanical and biological parameters. Result. Over the 3 days of loading, disc height decreased upon dynamic compression loading but increased upon unloading. The neutral zone was restored for all samples at the end of the dynamic unloading. Upon dynamic compression, the stiffness increased over time while the hysteresis decreased. Upon dynamic unloading, sulfated glycosaminoglycan (sGAG) release in the medium was lower at the endpoint. In the outer
Intervertebral disc (IVD) degeneration is inadequately understood due to the lack of in vitro systems that fully mimic the mechanical and biological complexity of this organ. We have recently made an advancement by developing a bioreactor able to simulate physiological, multiaxial IVD loading and maintain the biological environment in ex vivo IVD models [1]. To validate this new bioreactor system, we simulated natural spine movement by loading 12 bovine IVDs under a combination of static compression (0.1 MPa), cyclic flexion/extension (±3˚, ±6˚ or 0-6˚) and cyclic torsion (±2˚, ±4˚ or 0-4˚) for more than 10’000 (0.2 Hz) or 100’000 (1 Hz) cycles over 14 days. A higher number of cycles increased the release of glycosaminoglycans and nitric oxide, as an inflammation marker, whereas fewer cycles maintained these two factors at physiological levels. All applied protocols upregulated the expression of MMP13 in the outermost
Previous research has shown catabolic cell signalling induced by TNF-α and IL-1β within intervertebral (IVD) cells. However, these studies have investigated this in 2D monolayer cultures, and under hyper-physiological doses. Thus, we aim to revisit the catabolic responses of bovine IVD cells in vitro in 3D culture under increasing doses of TNF-α or IL-1β stimulation at three different timepoints. Primary bovine nucleus pulposus (NP) and
Background. An improved understanding of intervertebral disc (IVD) structure and function is required for treatment development. Loading induces micro-fractures at the interface between the nucleus pulposus (NP) and the
Introduction. Intervertebral disc degeneration (IDD) is a progressive process affecting all disc tissues, namely the nucleus pulposus (NP),