Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function, there is little objective information relating geometric changes imposed by the reverse shoulder and
Reverse total shoulder arthroplasty (RTSA) is an increasingly common treatment for osteoarthritic shoulders with irreparable rotator cuff tears. Although very successful in alleviating pain and restoring some function there is little objective information relating geometric changes imposed by the reverse shoulder and the moment generating capacity of the shoulder muscles. Recent modeling studies of reverse shoulders have shown significant variation in deltoid muscle moment arms over varied joint centers for shoulders with RTSA. The goal of this study was to investigate the sensitivity of muscle moment arms as a function of varying the joint center in one representative RTSA subject. We hypothesized there may exist a more beneficial joint implant placement, measured by muscle moment arms, compared to the actual surgical implant placement. A 12 degree of freedom, subject-specific model was used to represent the shoulder of a patient with RTSA for whom fluoroscopic measurements of scapular and humeral kinematics during abduction had been obtained. The computer model used these abduction kinematics and systematically varied joint center locations over 1521 different perturbations from the surgical placement to determine moment arms for the anterior, lateral and posterior aspects of the deltoid muscle. The joint center was varied from its surgical position ±4 mm in the anterior/posterior direction, 0–24 mm in the medial/lateral direction, and −10 mm to 14 mm in the superior/inferior direction. The anterior deltoid moment
The Stanford Upper Extremity Model (SUEM) (Holzbauer, Murray, Delp 2005, Ann Biomed Eng) includes the major muscles of the upper limb and has recently been described in scientific literature for various biomechanical purposes including modeling the muscle behavior after shoulder arthroplasty (Hoenecke, Flores-Hernandez, D'Lima 2014, J Shoulder Elbow Surg; Walker, Struk, Banks 2013, ISTA Proceedings). The initial publication of the SUEM compared the muscle moment
As treatments of knee osteoarthrosis are continually refined, increasingly sophisticated methods of evaluating their biomechanical function are required. Whilst TKA shows good preoperative pain relief and survivorship, functional outcomes are sub-optimal, and research focus has shifted towards their improvement. Restoration of physiological function is a common design goal that relies on clear, detailed descriptions of native biomechanics. Historical simplifications of true biomechanisms, for example sagittal plane approximation of knee kinematics, are becoming progressively less suitable for evaluation of new technologies. The patellar tendon moment
Introduction. Total knee arthroplasty (TKA) using conventional instrumentation has been shown to be a safe and effective way of treating end stage osteoarthritis by restoring function and alleviating pain. As robotic technology is developed to assist surgeons with intra-operative decision making such as joint balancing and component positioning, the safety of these advancements must be established. Furthermore, functional recovery and clinical outcomes should achieve comparable results to the gold standard of conventional instrumentation TKA. Methods. Eighty-seven subjects (89 knees) underwent robotic
Introduction. One of the disadvantages of lateral decubitus position during arthroscopic rotator cuff repair is the difficulty to control
INTRODUCTION. Total hip arthroplasty (THA) is regarded as one of the most successful surgeries in medicine. However, recent studies have revealed that ideal acetabular cup implantation is achieved less frequently than previously thought, as little as 50% of the time. It is well known that malalignment of the acetabular component in THA may result in dislocation, reduced range of motion, or accelerated wear. This study reports accuracy of a tactile robotic
Accurate and reproducible measurement of three-dimensional shoulder kinematics would contribute to better understanding shoulder mechanics, and therefore to better diagnosing and treating shoulder pathologies. Current techniques of 3D kinematics analysis use external markers (acromial cluster or scapula locator) or medical imaging (MRI or CT-Scan). However those methods present some drawbacks such as skin movements for external markers or cost and irradiation for imaging techniques. The EOS low dose biplanar X-Rays system can be used to track the scapula, humerus and thorax for different
The introduction of robotics for total knee arthroplasty (TKA) into the operating theatre is often associated with a learning curve and is potentially associated with additional complications. The purpose of this study was to determine the learning curve of robotic-assisted (RA) TKA within a multi-surgeon team. This prospective cohort study included 83 consecutive conventional jig-based TKAs compared with 53 RA TKAs using the Robotic Surgical Assistant (ROSA) system (Zimmer Biomet, Warsaw, Indiana, USA) for knee osteoarthritis performed by three high-volume (> 100 TKA per year) orthopaedic surgeons. Baseline characteristics including age, BMI, sex and pre-operative Kellgren-Lawrence grade were well-matched between the conventional and RA TKA groups. Cumulative summation (CUSUM) analysis was used to assess learning curves for operative times for each surgeon. Peri-operative and delayed complications were reviewed. The CUSUM analysis for operative time demonstrated an inflexion point after 5, 6 and 15 cases for each of the three surgeons, or 8.7 cases on average. There were no significant differences (p = 0.53) in operative times between the RA TKA learning (before inflexion point) and proficiency (after inflexion point) phases. Similarly, the operative times of the RA TKA group did not differ significantly (p = 0.92) from the conventional TKA group. There was no discernible learning curve for the accuracy of component planning using the RA TKA system. The average length of post-operative follow-up was 21.3 ± 9.0 months. There was no significant difference (p > 0.99) in post-operative complication rates between the groups. The introduction of the RA TKA system was associated with a learning curve for operative time of 8.7 cases. Operative times between the RA TKA and conventional TKA group were similar. The short learning curve implies this RA TKA system can be adopted relatively quickly into a surgical team with minimal risks to patients.
An understanding of forces that act on the shoulder joint is important for designing, testing, and evaluating shoulder arthroplasty products. Last year, we presented data describing upper
Isolated lateral compartment osteoarthritis (OA) occurs in 5–10% of knees with unicompartmental OA. Lateral unicompartmental knee arthroplasty has been limited in its prevalence due to challenging surgical technique issues. A robotic-arm assisted surgical technique has emerged as a way to achieve precise implant positioning which can potentially improve surgical outcomes. 63 consecutive lateral unicompartmental knee arthroplasties were performed by a single surgeon with the use of a metal backed, cemented prosthesis installed with the three-dimensional intra-operative kinematics and haptic robotic guidance. The average age of the patient was 72.7 years (range: 59–87) and the average BMI was 27.2 (range: 19.0–38.6). The follow-up ranged from 2 months to 30 months.Introduction:
Methods:
Isolated lateral compartment osteoarthritis (OA) occurs in 5–10% of knees with OA [1, 2]. Lateral unicompartmental knee arthroplasty (LUKA) emerged as a treatment to this disease in the early 80s but challenging surgical technique has limited the prevalence of this treatment option [1–3]. A robotic-arm assisted surgical technique (MAKO Surgical Corp.) has emerged as a way to achieve precise implant positioning which can potentially improve surgical outcomes. The purpose of this study was to evaluate short term outcomes for patients that received LUKA using a novel robotic-arm assisted surgical technique.Introduction
Objectives
This study looks at the dynamic tendon-to-bone contact properties of rotator cuff (RC) repairs—comparing single row repairs (SRR) with double row transosseous- equivalent (TOE) repairs. It was postulated that relaxation during, and movement following, the repair would significantly compromise contact properties and therefore, the ability of the tendon healing. Simulated tears were created in the supraspinatus tendon of six cadaveric human shoulders. A SRR was then performed using the OPUS System, creating two horizontal mattress sutures. An I-Scan electronic pressure-sensor (Tekscan, Boston, MA) was placed between the supraspinatus tendon and bone. The
UKA allows replacement of a single compartment in patients who have isolated osteoarthritis. However, limited visualization of the surgical site and lack of patient-specific planning provides challenges in ensuring accurate alignment and placement of the prostheses. Robotic technology provides three-dimensional pre-op planning, intra-operative ligament balancing and haptic guidance of bone preparation to mitigate the risks inherent with current manual instrumentation. The aim of this study is to examine the clinical outcomes of a large series of robot-assisted UKA patients. The results of 500 consecutive medial UKAs performed by a single surgeon with the use of a metal backed, cemented prosthesis installed with haptic robotic guidance. The average age of the patients at the time of the index procedure was 71.1 years (range was 40 to 93 years). The average height was 68 inches (range 58″–77″) and the average weight was 192.0 pounds (range 104–339 pounds). There were 309 males and 191 females. The follow-up ranges from 2 weeks to 44 months.Introduction:
Methods:
To establish if COVID-19 has worsened outcomes in patients with AO 31 A or B type hip fractures. Retrospective analysis of prospectively collected data was performed for a five-week period from 20 March 2020 and the same time period in 2019. The primary outcome was mortality at 30 days. Secondary outcomes were COVID-19 infection, perioperative pulmonary complications, time to theatre, type of anaesthesia, operation, grade of surgeon, fracture type, postoperative intensive care admission, venous thromboembolism, dislocation, infection rates, and length of stay.Aims
Methods
Patients awaiting resolution of swelling and oedema prior to ankle surgery can represent a significant burden on hospital beds. Our study assessed whether external pneumatic intermittent compression (EPIC) can reduce delays to surgery. Our prospective randomised controlled trial (n= 20) compared outcomes of patients treated with EPIC vs control group managed with ice and elevation. Included were patients aged <18 years with isolated closed ankle fractures admitted for management of swelling prior to surgery. Excluded were open fractures, injuries to contralateral leg, diabetes, absent pulses, peripheral vascular disease, inability to consent, no requirement for admission. Eligible patients were randomised to active or control arms. All patients were managed initially with reduction and back slab application. Patients in active
Introduction. The purpose of this study is to evaluate the radiological and clinical outcomes in Northern Ireland of free vascularised fibular bone grafting for the treatment of humeral bone loss secondary to osteomyelitis. Upper limb skeletal bone loss due to osteomyelitis is a devastating and challenging complication to manage for both surgeon and patient. Patients can be left with life altering disability and functional impairment. This limb threatening complication raises the question of salvage versus amputation and the associated risk and benefits of each. Free vascularised fibula grafting is a recognised treatment option for large skeletal defects in long bones but is not without significant risk. The benefit of vascularised over non-vascularised fibula grafts include preservation of blood supply lending itself to improved remodeling and osteointegration. Materials & Methods. Sixteen patients in Northern Ireland had free vascularised fibula grafting. Inclusion criteria included grafting to humeral defects secondary to osteomyelitis. Six patients were included in this study. Patients were contacted to complete DASH (Disabilities of the
The Disability of
The trapeziometacarpal joint (TMCJ) is the most common hand joint affected by osteoarthritis (OA), and trapezium implant arthroplasty is a potential treatment for recalcitrant OA. This meta-analysis aimed to investigate the efficacy and safety of various trapezium implants as an interventional option for TMCJ OA. Web of Science, PubMed, Scopus, Google Scholar, and Cochrane library databases were searched for relevant studies up to May 2022. Preferred Reported Items for Systematic Review and Meta-Analysis guidelines were adhered to and registered on PROSPERO. The methodological quality was assessed by National Heart, Lung, and Blood Institute tools for observational studies and the Cochrane risk of bias tool. Subgroup analyses were performed on different replacement implants, the analysis was done via Open Meta-Analyst software and P values < 0.05 were considered statistically significant. A total of 123 studies comprising 5752 patients were included. Total joint replacement (TJR) implants demonstrate greater significant improvements in visual analogue scale pain scores postoperatively. Interposition with partial trapezial resection implants was associated with the highest grip strength and highest reduction in the Disabilities of the
Thumb carpometacarpal joint (CMCJ) arthritis is a common and debilitating condition. The mainstay of surgical management is Trapeziectomy. Concerns about possible functional implications of collapse of the metacarpal into the arthroplasty space as well as the potential for scaphometacarpal led to the development of techniques to try and prevent this. The purpose of this study was to investigate if there were any significant differences in the long-term outcomes of patients who participated in a randomized trial of trapeziectomy alone compared with trapeziectomy with ligament reconstruction and tendon interposition (LRTI). Sixty-five patients participated in our original trial, the 1 year findings of which were published in 2007. These patients were invited for a follow-up visit at a mean of 17 years (range 15–20) postoperatively. Twenty-eight patients attended, who had 34 operations, 14 trapeziectomy alone and 20 with LRTI. Patients were asked to complete a visual analogue scale (VAS) for satisfaction with the outcome of their procedure, rated on a scale from 0 (most dissatisfied) to 100 (most satisfied). They also completed the short version of the Disabilities of the