Abstract. Objectives. Biomechanics is an essential form of measurement in the understanding of the development and progression of osteoarthritis (OA). However, the number of participants in
Lower back pain (LBP) is a worldwide clinical problem and a prominent area for research. Numerous in vitro
Abstract. Objectives. The fidelity of a 3D model created using image segmentation must be precisely quantified and evaluated for the model to be trusted for use in subsequent
Some activities of daily living require that the head be kept level during axial rotation of the cervical spine (Kinematically Constrained Axial Rotation). One such activity is looking over one's shoulder when walking or driving. The kinematic constraint of keeping the head level during axial rotation means that the segmental axis of rotation may not be aligned with the global axis of rotation of the cervical spine. Most of the literature on cervical spine axial rotation is based on experiments where the segmental axis of rotation is aligned with the global axis of rotation (Traditional Axial Rotation). There are only a few clinical and
Range of Motion (ROM) assessments are routinely used during joint replacement to evaluate joint stability before, during and after surgery to ensure the effective restoration of patient
Abstract. Objectives. ACL graft-suture fixation can be constructed with needle or needleless techniques. Needleless techniques have advantages of decreased injury, preparation time and cost. The Nice Knot (NK) is common among upper extremity procedures; however, its efficacy in ACL reconstruction relative to other needleless methods is not well known. The purpose of this study was to biomechanically compare quadriceps tendon (QT) grafts prepared with the NK versus the modified Prusik Knot (PK). Methods. Twenty QT grafts were harvested from 10 embalmed human cadaver specimens. 10 were prepared with the PK and 10 with the NK using a No.2 FiberWire (Arthrex, Naples, FL). The prepared grafts were then mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon-suture specimen was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and cyclic loading of 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded by the testing machine. Results. The average age of the donors was 89.1 ± 8.6 years. The NK showed significantly smaller elongations after pre-tensioning (p < 0.01), preloading (p < 0.001), and cyclic loading (p < 0.001). Peak load was greater for the PK than the NK (p = 0.047). No significant differences were seen for stiffness (p = 0.41) or cross-sectional area (p = 0.22). Conclusions. The results of this
Proximal femur fractures are common in the elderly population. The aim of this study was to determine the relationship between fracture type and proximal femoral geometric parameters. We retrospectively studied the electronic medical records of 85 elderly patients over 60 years of age who were admitted to the orthopedic department with hip fractures between January 2016 and January 2018 in a training and research hospital in Turkey. Age, fracture site, gender, implant type and proximal femoral geometry parameters (neck shaft angle [NSA], center edge angle [CEA], femoral head diameter [FHD], femoral neck diameter [FND], femoral neck axial length [FNAL], hip axial length [HAL], and femoral shaft diameter [FSD]) were recorded. Patients with femoral neck fractures and femur intertrochanteric fractures were divided into two groups. The relationship between proximal femoral geometric parameters and fracture types was examined. SPSS 25.0 (IBM Corparation, Armonk, New York, United States) program was used to analyze the variables. Independent samples t test was used to compare the fracture types according to NSA, FHD, FND and FSD variables. A statistically significant difference was found in FSD (p=0,002) and age (p=0,019). FSD and age were found to be greater in intertrochanteric fractures than neck fractures. Gender, site, CEA, FNAL, HAL, NSA, FHD and FND parametres were not significantly different. In the literature, it is seen that different results have been reached in different studies. In a study conducted in the Chinese population, a significant difference was found between the two groups in NSA, CEA and FNAL measurements. In a study conducted in the Korean population, a significant difference was found only in NSA measurements. The FSD is generally associated with bone mineral densitometry in the literature and has been shown to be a risk factor for fracture formation. However, a study showing that there is a relationship between FSD and fracture type is not available in the literature. In this study; FSD was found to be higher in intertrochanteric fractures (p = 0.002). However, for the clinical significance of this difference, we think that larger patient series and
Coronoid fractures account for 2 to 15% of the cases with elbow dislocations and usually occur as part of complex injuries. Comminuted fractures and non-unions necessitate coronoid fixation, reconstruction or replacement. The aim of this
Poor soft tissue balance in total knee arthroplasty (TKA) is one of the most primary causes of dissatisfaction and reduced joint longevity, which are associated with postoperative instability and early implant failure. 1. Therefore, surgical techniques, including mechanical instruments and 3-D guided navigation systems, in TKA aim to achieve optimum soft tissue balancing in the knee to improve postoperative outcome. 2. Patella-in-Place balancing (PIPB) is a novel technique which aims to restore native collateral ligament behaviour by preserving the original state without any release. Moreover, reduction of the joint laxity compensates for the loss of the visco-elastic properties of the cartilage and meniscus. Following its clinical success, we aimed to evaluate the impact of the PIPB technique on collateral ligament strain and laxity behaviour, with the hypothesis that PIPB would restore strains in the collateral ligaments. 3. . Eight fresh-frozen cadaveric legs were obtained (KU Leuven, Belgium, H019 2015-11-04) and CT images were acquired while rigid marker frames were affixed into the femur, and tibia for testing. After carefully removing the soft tissues around the knee joint, while preserving the joint capsule, ligaments, and tendons, digital extensometers (MTS, Minnesota, USA) were attached along the length of the superficial medial collateral ligament (MCL) and lateral collateral ligament (LCL). A handheld digital dynamometer (Mark-10, Copiague, USA) was used to apply an abduction or adduction moment of 10 Nm at fixed knee flexion angles of 0°, 30°, 60° and 90°. A motion capture system (Vicon Motion Systems, UK) was used to record the trajectories of the rigid marker frames while synchronized strain data was collected for MCL/LCL. All motion protocols were applied following TKA was performed using PIPB with a cruciate retaining implant (Stryker Triathlon, MI, USA). Furthermore, tibiofemoral kinematics were calculated. 4. and combined with the strain data. Postoperative tibial varus/valgus stresses and collateral ligament strains were compared to the native condition using the Wilcoxon Signed-Rank Test (p<0.05). Postoperative tibial valgus laxity was lower than the native condition for all flexion angles. Moreover, tibial valgus of TKA was significantly different than the native condition, except for 0° (p=0.32). Although, tibial varus laxity of TKA was lower than the native at all angles, significant difference was only found at 0° (p=0.03) and 90° (p=0.02). No significant differences were observed in postoperative collateral ligament strains, as compared to the native condition, for all flexion angles, except for MCL strain at 30° (p=0.02) and 60° (p=0.01). Results from this experimental study supported our hypotheses, barring MCL strain in mid-flexion, which might be associated with the implant design. Restored collateral ligament strains with reduced joint laxity, demonstrated by the PIPB technique in TKA in vitro, could potentially restore natural joint kinematics, thereby improving patient outcomes. In conclusion, to further prove the success of PIPB, further
Summary. Biomechanical studies comparing fixation constructs are predictable and do not relate to the significant clinical problems. We believe there is a need for more careful use of resources in the lab and better collaboration with surgeons to enhance clinical relevance. Introduction. It is our impression that many
Bone-patellar tendon-bone autografts, hamstring autografts or allografts are widely used grafts for ACL revision surgeries. Also use of quadriceps autograft for both primary and revision ACL surgeries is in an increasing popularity due to its biomechanical superior properties and less donor site morbidity. However, although several fixation techniques and devices for quadriceps tendon graft fixation on femoral side have been reported, literature lacks about
Biomechanical analysis is important to evaluate the effect of orthopaedic surgeries. CT-image based finite element method (CT-FEM) is one of the most important techniques in the computational biomechanics field. We have been applied CT-FEM to evaluate resorptive bone remodeling, secondary to stress shielding, after total hip arthroplasty (THA). We compared the equivalent stress and strain energy density to postoperative BMD (bone mineral density) change in the femur after THA, and a significant correlation was observed between the rate of changes in BMD after THA and equivalent stress. For periacetabular osteotomy cases, we investigated mechanical stress in the hip joint before and after surgery. Mechanical stress in the hip joint decreased significantly after osteotomy and correlated with the degree of the acetabular coverage. For arthroscopic osteochondroplasty cases, we examined mechanical strength of the proximal femur after cam resection using CT-FEM. The results suggested that both the depth and area of the resection at the distal part of femoral head-neck junction correlated strongly with fracture risk after osteochondroplasty. This talk consists of our results of clinical application studies using CT-FEM, and importance of application of CT-FEM to
Several previous pathoanatomical and
The reduction for unstable femoral intertrochanteric fracture should be extramedullary, which means that the proximal fragment protrudes for the distal fragment. However, only few articles have compared extramedullary and intramedullary reductions in a
Digital image correlation (DIC) is rapidly increasing in popularity in
It is common belief that consolidated intramedullary nailed trochanteric femur fractures can result in secondary midshaft or supracondylar fractures, involving the distal screws, when short or long nails are used, respectively. In addition, limited data exists in the literature to indicate when short or long nails should be selected for treatment. The aim of this
Transverse patella fractures are commonly encountered in trauma surgery, open reduction and internal fixation are considered the gold standard treatment modality that could permit early knee motion and immediate rehabilitation. Many fixation methods had been defined and compared to each other's in many clinical and
Clinical investigations show that the cervical spine presents wide inter-individual variability, where its motion patterns and load sharing strongly depend on the anatomy. The magnitude and scope of cervical diseases, including disc degeneration, stenosis, and spondylolisthesis, constitute serious health and socioeconomic challenges that continue to increase along with the world”s growing aging population. Although complex exact finite element (FE) modeling is feasible and reliable for
Background. Distal radius fractures are common injuries but no clear consensus regarding optimal management of unstable fractures exists. Open reduction and internal fixation with volar plates is an increasingly popular but the associated complication rate can be 10%. Intramedullary nails are an alternative offering the potential advantages of reduced risk of tendon injury and intra-articular screw penetration. This article systematically reviews the published literature evaluating the biomechanics, outcomes and complications of intramedullary nails in the management of distal radius fractures. Methods. A systematic review of Medline and EMBASE databases was performed for studies reporting the biomechanics, functional outcome or complications following intramedullary nailing of distal radius fractures. Critical appraisal was performed with respect to validated quality assessment scales. Results. 16 studies were included for review. The
Background. A large proportion of the expense incurred due to hip fractures arises due to secondary factors such as duration of hospital stay and additional theatre time due to surgical complications. Studies have shown that the use of intramedullary (IM) nail fixation presents a statistically higher risk of re-fracture than plating, which has been attributed to the stress riser at the end of the nail. It is not clear, however, if this situation also applies to unstable fractures, for which plating has a higher fixation failure rate. Moreover,