Surgical treatment of fragility sacrum fractures with percutaneous sacroiliac (SI) screw fixation is associated with high failure rates in terms of screw loosening, cut-through and turn-out. The latter is a common cause for complications, being detected in up to 20% of the patients. The aim of this study was to develop a new screw-in-screw concept and prototype implant for fragility sacrum fracture fixation and
It is common belief that consolidated intramedullary nailed trochanteric femur fractures can result in secondary midshaft or supracondylar fractures, involving the distal screws, when short or long nails are used, respectively. In addition, limited data exists in the literature to indicate when short or long nails should be selected for treatment. The aim of this biomechanical cadaveric study was to investigate short versus long Trochanteric Femoral Nail Advanced (TFNA) fixation in terms of construct stability and generation of secondary fracture pattern following trochanteric fracture consolidation. Eight intact human cadaveric femur pairs were assigned to 2 groups of 8 specimens each for nailing using either short or long TFNA with blade as head element. Each specimen was first biomechanically preloaded at 1 Hz over 2000 cycles in superimposed synchronous axial compression to 1800 N and internal rotation to 11.5 Nm. Following, internal rotation to failure was applied over an arc of 90° within 1 second under 700 N axial load. Torsional stiffness, torque at failure, angle at failure and energy at failure were evaluated. Fracture patterns were analyzed. Outcomes in the groups with short and long nails were 9.7±2.4 Nm/° and 10.2±2.9 Nm/° for torsional stiffness, 119.8±37.2 Nm and 128.5±46.7 Nm for torque at failure, 13.5±3.5° and 13.4±2.6° for angle at failure, and 887.5±416.9 Nm° and 928.3±461.0 Nm° for energy at failure, respectively, with no significant differences between them, P≥0.167. Fractures through the distal locking screw occurred in 5 and 6 femora instrumented with short and long nails, respectively. Fractures through the lateral entry site of the head element were detected in 3 specimens within each group. For short nails, fractures through the distal shaft region, not interfacing with the implant, were detected in 3 specimens. From biomechanical perspective, the risk of secondary peri-implant fracture after intramedullary nailed trochanteric fracture consolidation is similar when using short or long TFNA. Moreover, for both nail versions the fracture pattern does not unexceptionally involve the distal locking screw.
In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the
In severe cases of total knee arthroplasty which cannot be treated with off-the-shelf implants anymore custom-made knee implants may serve as one of the few remaining options to restore joint function or to prevent limb amputation. Custom-made implants are specifically designed and manufactured for one individual patient in a single-unit production, in which the surgeon is responsible for the implant design characteristics in consultation with the corresponding engineer. The mechanical performance of these custom-made implants is challenging to evaluate due to the unique design characteristics and the limited time until which the implant is needed. Nevertheless, the custom-made implant must comply with clinical and regulatory requirements. The design of custom-made implants is often based on a underlying reference implant with available
Introduction. The Achilles tendon is the thickest and strongest tendon in the human body. Even though the tendon is so strong, it is one of the most frequently injured tendons. Treatment of patients after rupture is planned conservatively and surgically. Conservative treatment is generally applied to elderly patients with sedentary lives. If the treatment is surgical, it can be planned as open surgery or percutaneous surgery. In our study with rabbits, we wrapped a membrane made of plga (polylactic-co-glycolic acid) nanotubes impregnated with type 1 collagen around the tendon in rabbits that underwent open Achilles tendon repair surgery. After surgery, biomechanical and histological tests were performed on the tendons. Method. In the study consisting of 24 rabbits, 2 groups were created by random distribution. In the study group, after the Achilles tendon rupture was created, a type 1 collagen-impregnated plga-based membrane was placed around the tendon after the repair of 1 modified Kesslerr suture. In the control group, after the Achilles tendon rupture was created, 1 modified Kessler suture and Tendon repair was performed with the application of 3 primary sutures. At the end of the 6th week of the study, the rabbits in 2 groups were randomly distributed and histological examination was performed. Additionally,
A novel EP4 selective agonist (KMN-159) was developed [1] and has been proven that it can act as an osteopromotive factor to repair critical-size femoral bone defects in rats at a dose-dependent manner [2]. Based on its osteopromotive properties, we hypothesized that KMN-159 could also aid in bone formation for spinal fusion. Therefore, the aim of this study was to investigate its spinal fusion effect in a dorsolateral spinal fusion model in rats. This study was performed on 192, 10-week-old male Wistar rats. The rats were randomized into 8 groups (n = 12 per group): 1) SHAM (negative control), 2) MCM (scaffold only), 3) MCM + 20 µg BMP-2 (positive control), 4-8) MCM + 0.2, 2, 20, 200 or 2000 µg KMN-159. A posterolateral intertransverse process spinal fusion at L4 to L5 was performed bilaterally by implanting group dependent scaffolds (see above) or left empty in the SHAM group (protocol no. 25-5131/474/38). Animals were euthanized after 3 weeks and 6 weeks for µCT and
Introduction. A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The incubation time required is dependent on the working temperatures and tissue thickness. The calcein-AM dye will not be retained in the cells for more than four hours. The specimen preparation and culturing protocol have demonstrated good cell viability at day 0 and after seven days of culture. Processing times and sample preparation play an essential role as the cell viability components in most kits hydrolyse or photobleach quickly. A step-by-step replicable protocol for evaluating the cell viability in IVD will facilitate the evaluation of cell and toxicity-related outcomes of
Despite past advances of implant technologies, complication rates of fixations remain high at challenging sites such as the proximal humerus [1]. These may not only be owed to the implant itself but also to dissatisfactory surgical execution of fracture reduction and implant positioning. Therefore, the aim of this study was to quantify the instrumentation accuracy of a highly standardised and guided procedure and its influence on the biomechanical outcome and predicted failure risk. Preoperative planning of osteotomies creating an unstable 3-part fracture and fixation with a locking plate was performed based on CT scans of eight pairs of low-density proximal humerus samples from elderly female donors (85.2±5.4 years). 3D-printed subject-specific guides were used to osteotomise and instrument the samples according to the pre-OP plan. Instrumentation accuracies in terms of screw lengths and orientations were evaluated by comparing post-OP CT scans with the pre-OP plan. The fixation constructs were
Introduction. The main postoperative complications in fixation of ulna shaft fractures are non-union and implant irritation using currently recommended 3.5-mm locking compression plates. An alternative approach using a combination of two smaller plates in orthogonal configuration has been proposed. The aim of this study was to compare the biomechanical properties of a single 3.5-mm locking compression plate versus double plating using one 2.5-mm and one 2.0-mm mandible plate in a human ulna shaft fracture model. Method. Eight pairs human ulnar specimens with a standardized 10-mm fracture gap were pairwise assigned for instrumentation with either a single 3.5-mm plate placed posteriorly, or for double plating using a 2.5-mm and a 2.0-mm mandible plate placed posteriorly under the flexor muscles and laterally under the extensor muscles. All constructs were initially non-destructively
Reorientating pelvic osteotomies are performed to improve femoral head coverage and secondary degenerative arthritis. A rectangular triple pelvic innominate osteotomy (3PIO) is performed in symptomatic cases. However, deciding optimal screw fixation type to avoid complications is questionable. Therefore, this study aimed to investigate the biomechanical behavior of two different acetabular screw configurations used for rectangular 3PIO osteosynthesis. It was hypothesized that bi-directional screw fixation would be biomechanically superior to mono-axial screw fixation technique. A rectangular 3PIO was performed in twelve right-side artificial Hemi-pelvises. Group 1 (G1) had two axial and one transversal screw in a bi-directional orientation. Group 2 (G2) had three screws in the axial direction through the iliac crest. Acetabular fragment was reoriented to 10.5° inclination in coronal plane, and 10.0° increased anteversion along axial plane. Specimens were
Introduction. Pedicle screw loosening in posterior instrumentation of thoracolumbar spine occurs up to 60% in osteoporotic patients. These complications may be alleviated using more flexible implant materials and novel designs that could be optimized with reliable computational modeling. This study aimed to develop and validate non-linear homogenized finite element (hFE) simulations to predict pedicle screw toggling. Method. Ten cadaveric vertebral bodies (L1-L5) from two female and three male elderly donors were scanned with high-resolution peripheral quantitative computed tomography (HR-pQCT, Scanco Medical) and instrumented with pedicle screws made of carbon fiber-reinforced polyether-etherketone (CF/PEEK). Sample-specific 3D-printed guides ensured standardized instrumentation, embedding, and loading procedures. The samples were
The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV as well as supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond. Following, all specimens were: (1)
The quest for optimal treatment of acute distal tibiofibular syndesmotic disruptions is still in full progress. Using suture-button repair devices is one of the dynamic stabilization options, however, they may not be always appropriate for stabilization of length-unstable syndesmotic injuries. Recently, a novel screw-suture repair system was developed to address such issues. The aim of this study was to investigate the performance of the novel screw-suture repair system in comparison to a suture-button stabilization of unstable syndesmotic injuries. Eight pairs of human cadaveric lower legs were CT scanned under 700 N single-leg axial loading in five foot positions – neutral, 15° external/internal rotation and 20° dorsi-/plantarflexion – in 3 different states: (1) pre-injured (intact); (2) injured, characterized by complete syndesmosis and deltoid ligaments cuts simulating pronation-eversion injury types III and IV, and supination-eversion injury type IV according to Lauge-Hansen; (3) reconstructed, using a screw-suture (FIBULINK, Group 1) or a suture-button (TightRope, Group 2) implants for syndesmotic stabilization, placed 20 mm proximal to the tibia plafond/joint surface. Following, all specimens were: (1)
Introduction and Objective. Plating of geriatric distal femoral fractures with Locking Compression Plate Distal Femur (LCP–DF) often requires augmentation with a supplemental medial plate to achieve sufficient stability allowing early mobilization. However, medial vital structures may be impaired by supplemental medial plating using a straight plate. Therefore, a helically shaped medial plate may be used to avoid damage of these structures. Aim of the current study was to investigate the biomechanical competence of augmented LCP–DF plating using a supplemental straight versus helically shaped medial plate. Materials and Methods. Ten pairs of human cadaveric femora with poor bone quality were assigned pairwise for instrumentation using a lateral anatomical 15-hole LCP–DF combined with a medial 14-hole LCP, the latter being either straight or manually pre-contoured to a 90-degree helical shape. An unstable distal femoral fracture AO/OTA 33–A3 was simulated by means of osteotomies. All specimens were
In vitro
Introduction and Objective. Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade. Materials and Methods. Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were
Introduction and Objective. Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter. The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading. Materials and Methods. The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were
Fracture fixation has advanced significantly with the introduction of locked plating and minimally invasive surgical techniques. However, healing complications occur in up to 10% of cases, of which a significant portion may be attributed to unfavorable mechanical conditions at the fracture. Moreover, state-of-the-art plates are prone to failure from excessive loading or fatigue. A novel biphasic plating concept has been developed to create reliable mechanical conditions for timely bone healing and simultaneously improve implant strength. The goal of this study was to test the feasibility and investigate the robustness of fracture healing with a biphasic plate in a large animal experiment. Twenty-four sheep underwent a 2mm mid-diaphyseal tibia osteotomy stabilized with either the novel biphasic plate or a control locking plate. Different fracture patterns in terms of defect location and orientation were investigated. Animals were free to fully bear weight during the post-operative period. After 12 weeks, the healing fractures were evaluated for callus formation using micro-computer tomography and strength and stiffness using
Introduction and Objective. In multiple trauma patients, as well as in the healing of isolated fractures (Fx) with heavy bleeding (trauma haemorrhage, TH), complications occur very often. This is particularly evident in elderly patients over 65 years of age. Since these accompanying circumstances strongly influence the clinical course of treatment, the influence of age on bone regeneration after femoral fracture and severe blood loss was investigated in this study. Materials and Methods. 12 young (17–26 weeks) and 12 old (64–72 weeks) male C57BL / 6J mice per group were examined. The fracture group Fx underwent an osteotomy after applying an external fixator. The THFx group also received blood pressure-controlled trauma hemorrhage (35 mmHg for 90 minutes) and reperfusion with Ringer's solution for 30 minutes. The Sham group received only the catheter and one external fixator. μCT scans of the femora were performed in vivo after 2 weeks and ex vivo after 3 weeks. Histological and biomechanical examinations were also carried out. The statistical significance was set at p ≤ 0.05. The non-normally distributed data were analyzed using the Mann-Whitney-U or Kruskal-Wallis test. Results. The histology showed less mineralized bone in the fracture gap in old animals of the Fx (25.41% [1.68%]) and THFx groups (25.50% [4.07%]) compared with the young ones (34.20% [6.36%], p = 0.003; 34.31% [5.12%], p=0.009). Moreover, a severe blood loss lead to more cartilage in both young (6.91% [5.08%]) and old animals (4.17% [1.42%]) compared to animals with only a fracture (2, 45% [1.04%], p=0.004; 2.95% [1.12%], p=0.032). In old animals (11.37 / nm. 2. [17.17 / nm. 2. ]) in contrast the young mice with an isolated fracture (33.6/nm. 2. [8.83/nm. 2. ]) fewer osteoclasts were present (p=0.009). Therefore, the severe blood loss further reduced the number of osteoclasts only in young animals (16.83/nm. 2. [6.07/nm. 2. ]) (p=0.004). In the in vivo μCT, after 2 weeks, a lower volume of bone, cortex and callus was found in old THFx animals (3.14 mm. 3. [0.64 mm. 3. ]); 1.01 mm. 3. [0.04 mm. 3. ]; 2.07 mm. 3. [0.57 mm. 3. ]) compared with the Fx animals (4.29 mm. 3. [0.74 mm. 3. ], p=0.008; 1.18 mm. 3. [0, 25 mm. 3. ], p=0.004; 3.02 mm. 3. [0.77 mm. 3. ], p=0.008) After 3 weeks, the ex vivo μCT scans also showed a reduced callus percentage in old THFx animals (61.18% [13.9 9%]), as well as a low number of trabeculae (1.81 mm. -1. [0.23 mm. -1. ]) compared to animals without blood loss (68.72% [15.71%], p = 0.030; 2.06mm. -1. [0.37mm. -1. ], p=0.041). In the