Advertisement for orthosearch.org.uk
Results 1 - 20 of 55
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 116 - 116
2 Jan 2024
Šećerović A Ristaniemi A Crivelli F Heub S Weder G Ferguson S Ledroit D Grad S
Full Access

Intervertebral disc (IVD) degeneration is inadequately understood due to the lack of in vitro systems that fully mimic the mechanical and biological complexity of this organ. We have recently made an advancement by developing a bioreactor able to simulate physiological, multiaxial IVD loading and maintain the biological environment in ex vivo IVD models [1]. To validate this new bioreactor system, we simulated natural spine movement by loading 12 bovine IVDs under a combination of static compression (0.1 MPa), cyclic flexion/extension (±3˚, ±6˚ or 0-6˚) and cyclic torsion (±2˚, ±4˚ or 0-4˚) for more than 10’000 (0.2 Hz) or 100’000 (1 Hz) cycles over 14 days. A higher number of cycles increased the release of glycosaminoglycans and nitric oxide, as an inflammation marker, whereas fewer cycles maintained these two factors at physiological levels. All applied protocols upregulated the expression of MMP13 in the outermost annulus fibrosus (AF), indicating a collagen degradation response. This was supported by fissures observed in the AF after a longer loading duration. Increasing loading cycles induced high cell death in the nucleus pulposus and inner AF, while with fewer cycles, high cell viability was maintained in all IVD regions, irrespective of the magnitude of rotation. Less frequent multiaxial loading maintains IVD homeostasis while more frequent loading initiates an IVD degenerative profile. Specifically, the morphological and molecular changes were localized in the AF, which can be associated with combined flexion/extension and torsion. More loading cycles induced region-specific cell death and a higher release of extracellular matrix molecules from the innermost IVD regions, likely associated with longer exposure to static compression. Altogether, we demonstrated the advantages of the multiaxial bioreactor to study region-specific response in the IVD, which will allow a more profound investigation of IVD degeneration under different combinations of motions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 95 - 95
14 Nov 2024
Machain TC Kharchenko A Hostettler R Lippl J Mouthuy PA
Full Access

Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute adduction/abduction stimulation to chambers daily over a week. A metabolic activity assay served to assess cell viability at four time points. Statistical significance = p<0.05. Result. One day after beginning mechanical stimulation, chambers in the medium and high-force regimes displayed a rise in metabolic activity by 3% and 5%, respectively. By the last experimental day, all mechanical stimulation regimes had induced an augment in cell viability (15%, 57% and 39% with low, medium, and high loads, respectively) matched against the static controls. Compared to all other conditions, the medium-force regime prompted an increased relative change in metabolic activity for every time point set against day one (p<0.05). Conclusion. Human tenocytes’ viability reflected by metabolic activity in a physiologically relevant bioreactor system is enhanced by loading forces around 25N when mechanically stimulating using adduction/abduction motions. Knowing the most favourable load regime to stimulate tenocyte growth has informed the ongoing exploration of the distinctive effect of different motions on tendon regeneration towards engineering tissue grafts. This work was supported by the Engineering and Physical Sciences Research Council EP/S003509/1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 74 - 74
17 Apr 2023
Theodoridis K Hall T Munford M Van Arkel R
Full Access

The success of cementless orthopaedic implants relies on bony ingrowth and active bone remodelling. Much research effort is invested to develop implants with controllable surface roughness and internal porous architectures that encourage these biological processes. Evaluation of these implants requires long-term and costly animal studies, which do not always yield the desired outcome requiring iteration. The aim of our study is to develop a cost-effective method to prescreen design parameters prior to animal trials to streamline implant development and reduce live animal testing burden. Ex vivo porcine cancellous bone cylinders (n=6, Ø20×12mm) were extracted from porcine knee joints with a computer-numerically-controlled milling machine under sterile conditions within 4 hours of animal sacrifice. The bone discs were implanted with Ø6×12mm additive manufactured porous titanium implants and were then cultured for 21days. Half underwent static culture in medium (DMEM, 10% FBS, 1% antibiotics) at 37°C and 5% CO. 2. The rest were cultured in novel high-throughput stacked configuration in a bioreactor that simulated physiological conditions after surgery: the fluid flow and cyclic compression force were set at 10ml/min and 10–150 N (1Hz,5000 cycles/day) respectively. Stains were administered at days 7 and 14. Samples were evaluated with widefield microscopy, scanning electron microscopy (SEM) and with histology. More bone remodelling was observed on the samples cultured within the bioreactor: widefield imaging showed more remodelling at the boundaries between the implant-bone interface, while SEM revealed immature bone tissue integration within the pores of the implant. Histological analysis confirmed these results, with many more trabecular struts with new osteoid formation on the samples cultured dynamically compared to static ones. Ex vivo bone can be used to analyse new implant technologies with lower cost and ethical impact than animal trial. Physiological conditions (load and fluid flow) promoted bone ingrowth and remodelling


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 111 - 111
1 Nov 2018
Silva JC Moura C Borrecho G de Matos AA Cabral JMS Linhardt RJ Ferreira FC
Full Access

Bioreactors have been used in articular cartilage tissue engineering (AC-TE) to apply different mechanical stimuli in an attempt to better mimic the native AC microenvironment. However, these systems are often highly complex, costly and not very versatile. In this work, we propose a simple and customizable perfusion bioreactor fabricated by 3D-extrusion to study the effect of shear stress in human bone-marrow mesenchymal stem cells (hBMSC) cultured in 3D porous polycaprolactone (PCL) scaffolds. Prototype models were designed in a CAD-software to perfectly fit the scaffolds and computational fluid dynamics analysis was used to predict the fluid velocities and shear stress forces inside the bioreactor. For the culture studies, hBMSC-PCL constructs were cultured under static expansion for 2 weeks and then transferred to the ABS-extruded bioreactors for continuous perfusion culture (0.2mL/min) under chondrogenic induction for additional 3 weeks. Perfused constructs showed similar cell proliferation and higher sGAG production in comparison to the static counterparts (bioreactor without perfusion). Constructs exposed to shear stress stimuli presented higher expressions of chondrogenic genes (COLII/Sox9/Aggrecan) and reduced expressions of COLI and Runx2 (osteogenic) than static group. However, the higher expression of COLX in the perfused constructs suggests a shear stress role in AC hypertrophy. Both conditions (perfused/static) stained positively for GAG deposition and for the presence of collagen II and aggrecan. Overall, the results provide a proof-of-concept of our customizable extruded bioreactor envisaging applications as a platform for AC-TE repair strategies and in the development of more reliable in vitro models for disease modelling and drug screening


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 103 - 103
1 Jan 2017
Marrella A Alberi V Scaglione S
Full Access

Due to its avascular nature, articular cartilage exhibits a very limited capacity to regenerate and to repair. Although much of the engineered cartilage grafts so far proposed have successfully shown to mimic the morphological and biochemical appearance of hyaline cartilage, they are generally mechanically inferior to the natural tissue. 1. In this study a new bioreactor device was realized to test innovative scaffolds under physiological stimulation (i.e. perfusion fluid flow and dynamic compression), with the aim to produce a more functional engineered tissue construct for articular applications. The computer-controlled bioreactor system has been properly designed to simultaneously provide static or dynamic compression and/or continuous perfusion to 3D engineered constructs, reproducing the physiological loads to which the articular cartilage is subjected. The specifically designed bioreactor comprises a chamber where the grafts are accommodated, a porous piston connected to a linear stepper motor (Dings, Model 34-2080-4-300), which controls its movement to provide mechanical stimulation and a peristaltic pump (Watson-Marlow, Model 323S), connected by joints and pipes to the culture chamber to ensure a continuous media perfusion. As piston for compression, a sintered stainless steel filter (43% of porosity) was adopted to allow the perfusion of the culture media during physical stimulation. The culture chamber is composed by a hollow cylinder (30 mm × 40,5 mm) and a base realized as a single object. They are made in polycarbonate for its characteristics of transparency and infrangibility and linked to a Nylon cover through four brass tie rods unscrewable from above. The chamber has been designed to accommodate simultaneously different constructs of any size and shape and stimulate them with perfusion and/or dynamic compression. A finites elements program was used to mimic the effects of perfusion and compression regime on the scaffolds cultured within the bioreactor chamber. The bioreactor was properly designed and developed. Particular attention has been paid to the implementation of a simple, compact and economical system. It was then tested by using different polymeric porous scaffolds (PVA, collagen, Gelatin grafts, both porous and not) cultured with mesenchymal cells up to two weeks. The system has been validated in terms of sterility, experimental reproducibility and ease to use. The structural stability of grafts over time has been observed; moreover cells adhesion, proliferation and matrix production under different chemical-physical stimuli conditions is under investigation. We have realized a novel bioreactor system representing an artificial articular niche, where a dynamic compression combined with fluid perfusion allows to functionally and mechanically validate tissue substitutes, besides investigating the response of engineered cartilaginous tissues to physical stimuli mimicking the natural cartilage micro-environment. Such bioreactor may be in fact adopted as a sort of articular simulator for promoting and standardizing the new tissue formation in vitro, preconditioning cell fate through the application of proper artificial stimuli. Moreover, they can be valid tools to investigate physiological processes and novel therapeutic approaches avoiding controversial animal models


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 89 - 89
1 Mar 2021
Govaerts A Graceffa V Lories R Jonkers I
Full Access

Mechanical loading regulates the metabolism of chondrocytes in cartilage1. Nowadays, studies exploring the in vitro response of cartilage towards loading often rely on bioreactor experiments applying only compressive loading. This is likely not sufficiently representative for the complex multi-directional loading profile in vivo (i.e. where typical compressive and shear loading are both present). The impact of multi-axial loading is specifically relevant in the context of the onset of osteoarthritis (OA) due to joint destabilization. Here, alterations in the 3D loading profile, and in particular increased shear forces, are suggested to initiate catabolic molecular responses leading to cartilage degeneration3. However, in vitro/ex vivo data confirming this hypothesis are currently lacking. Therefore, we aim to investigate how increased shear loading affects the metabolism and ECM deposition of a healthy chondrogenic cell line and if this response is different in osteoarthritic primary chondrocytes. A murine chondrogenic precursor cell line (ATDC5) and primary human osteoarthritic articular chondrocytes (hOACs) were encapsulated in 2.2% alginate disks and cultured in DMEM medium for three days. Hydrogels seeded with the different cell groups were loaded in the TA ElectroForce BioDynamic Bioreactor and subjected to following loading conditions: (a) 10% compression at 1Hz for 1h, (b) 10% compression and 10° shear loading at 1Hz for 1h. Unloaded constructs were used as control. After loading, hydrogel constructs were stabilized in culture medium for 2 hours, to facilitate adequate gene expression responses, before being dissolved and snap frozen. RNA was isolated and gene expression levels specific for anabolic pathways, characterized by extracellular matrix (ECM) genes (Col2a1, Aggrecan and Perlecan), catabolic processes (MMP-3 and MMP-13) and chondrogenic transcription factor (Sox9) were evaluated using RT-qPCR. The TA ElectroForce BioDynamic Bioreactor was successfully set-up to mimic cartilage loading. In ATDC5 cells, compression elicits an increase in all measured ECM genes (Col2a1, Aggrecan and Perlecan) compared to unloaded controls, suggesting an anabolic response. This upregulation is decreased when adding additional shear strain. In contrast to ATDC5 cells, the anabolic response of proteoglycans Aggrecan and Perlecan to compressive loading was lower in osteoarthritic chondrocytes, and Col2a1 expression appeared decreased. Adding shear strain reversed this effect on Col2a1 expression. Multi-directional loading increased transcription factor Sox9 expression compared to compression in both ATDC5 and OA chondrocytes. In OA chondrocytes, both loading regimens increased MMP-3 and MMP-13 expression. Shear loading reduces the anabolic effect of compressive loading in both cell types. OA cells presented more catabolic response to mechanical loading compared to precursors, given the increase in catabolic enzymes MMP-3 and MMP-13


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 21 - 21
1 Aug 2012
Khan A Surrao D Waldman S
Full Access

Bioreactors used in tissue engineering are mostly batch-fed with media added and removed periodically. Continuous flow bioreactors help increase ECM accumulation and cell proliferation, due to continuous flow of fresh media, thus, maintaining a steady extracellular nutrient environment. In previous work, we found chondrocytes cultured in continuous flow bioreactors with 20mM HEPES, accumulated considerably more matrix than static cultures. Hence, the objective of this study is to determine if NaHCO3 helps maintain a more physiological extracellular pH in the bioreactor, thus, enhancing ECM accumulation. Cartilaginous tissue constructs were generated from isolated chondrocytes harvested from the metacarpal joints of 12-18 month old calves. Cells were seeded in high-density 3D cultures (2 million cells/construct). Constructs were cultivated in a continuous flow bioreactor, with and without 14 mM NaHCO3 supplemented media, for 5 weeks, at 37 degrees Celsius, 95% relative humidity and 5% CO2. After 5 weeks of culture the tissue weight, thickness, pH and ECM deposition were determined. From the results obtained (Table 1), it is evident that chondrocytes cultured in the continuous flow bioreactor with 14mM NaHCO3 and 20mM HEPES, proliferated more extensively and produced more ECM than chondrocytes cultured in only 20mM HEPES. Additionally, the NaHCO3 constructs accumulated ECM in both the vertical (thickness) and horizontal (outgrowth) planes. The question then arises, are the effects mediated by improved buffering, or by addition of NaHCO3 itself. There was a significant difference between the pH of media with (pH 7.41) and without NaHCO3 (pH 6.95) supplementation, with no exposure to cells or tissue; when allowed to equilibrate with 5% CO2 at 37 degrees Celsius. However, there was little difference between the media after exposure to cells; after five weeks of culture in the bioreactor (Table 1). Thus, in the bioreactor with bicarbonate present, because of increased cell number and activity, the pH fell 0.54 pH units during the 7 hour residence time in comparison to the bioreactor with no bicarbonate supplementation. With no NaHCO3 supplementation, the extracellular pH of the medium fed to the cells was never above pH 7.0 (Table 1); low pH could account, at least in part, for lower ECM and cell numbers


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 114 - 114
1 Jul 2014
Viateau V Manassero M Petite H Logeart-Avramoglou D Sladkova M Oudina K Bensidhoum M
Full Access

Short Summary. The present study demonstrated the feasibility of culturing a large number of standardised granular MSC-containing constructs in a packed bed/column bioreactor that can produce sheep MSC-containing constructs to repair critical-size bone defects in sheep model. Introduction. Endogenous tissue regeneration mechanisms do not suffice to repair large segmental long-bone defects. Although autologous bone graft remains the gold standard for bone repair, the pertinent surgical technique is limited. Tissue constructs composed of MSCs seeded onto biocompatible scaffolds have been proposed for repairing bone defects and have been established in clinically-relevant animal models. Producing tissue constructs for healing bone defects of clinically-relevant volume requires a large number of cells to heal an approximately 3 cm segmental bone defect. For this reason, a major challenge is to expand cells from a bone marrow aspirate to a much larger, and sufficient, number of MSCs. In this respect, bioreactor systems which provide a reproducible and well-controlled three-dimensional (3D) environment suitable for either production of multiple or large size tissue constructs are attractive approaches to expand MSCs and obtain MSC-containing constructs of clinical grade. In these bioreactor systems, MSCs loaded onto scaffolds are exposed to fluid flow, a condition that provides both enhanced access to oxygen and nutrients as well as fluid-flow-driven mechanical stimulation to cells. The present study was to evaluate bioreactor containing autologous MSCs loaded on coral scaffolds to repair critical-size bone defects in sheep model. Materials and Methods. Animals: 12 two-year-old, female Pre-Alpes sheep were used and reared in accordance with the European Committee for Care. Three-dimensional, porous scaffolds (each 3×3×3 mm) of natural coral exoskeleton were used as substrates for cell attachment. The packed bed/column bioreactor set-up used in the present study was composed of a vertical column filled with MSC-containing constructs. Sheep MSCs were isolated from sheep bone marrow. MSCs were seeded on scaffolds and cultured overnight under standard cell-culture condition. MSC-containing constructs were r placed into the perfusion bioreactor and were either exposed to a perfusion medium flow rate of 10 mL/min for 7 continuous days. Osteoperiosteal segmental (25 mm) defects were made in the left metatarsal bone of 12 sheep. The defect was either filled with coral scaffolds alone (Group 1; five sheep); or filled with coral scaffolds loaded with MSCs (Group 2; five sheep); or filled with autologous bone graft (Group 3; 2 sheep). Results. At 6 month after implantation, radiographs showed resorption of the coral scaffold in all animals but this process was not complete and not the same in all animal. At 6 month radiographs showed more bone formation in group 2 than in group 1. New bone formation volume in each defect was assessed by micro-computed tomography. Volume of bone healing was higher in group 2 than group 1. Discussion. The potential of MSC-containing constructs in a bioreactor for repairing long segmental critical-sized bone defects in sheep was investigated. In one animal of the group 2 the volume of new bone formation was 2066 mm3 and was similar to the bone volume of group 3 (2300 mm3). Our results may have important implications in bone tissue engineering. We observed that the bone tissue regenerationosteogenic ability of bone constructs processed in bioreactor approached the bone autografts


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 544 - 553
1 Apr 2006
Akmal M Anand A Anand B Wiseman M Goodship AE Bentley G

Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II collagen was produced by both bovine and human chondrocytes in the peripheral and central regions of the constructs and the staining intensity was enhanced by culture within the RWV. A capsule of flattened cells containing type-I collagen developed around the constructs maintained under static conditions when seeded with either bovine or human chondrocytes, but not when cultured within the RWV bioreactor


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 51 - 51
2 Jan 2024
Grad S
Full Access

Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical environment on the IVD integrity and for preclinical testing of new therapies under simulated physiological conditions. Thereby the loading parameters that determine the beneficial or detrimental reactions largely depend on the IVD model and its preparation. Within this symposium we are discussing the use of bovine caudal IVD culture models to reproduce tissue inflammation or matrix degradation with or without bioreactor controlled mechanical loading. Furthermore, the outcome parameters that define the degenerative state of the whole IVD model will be outlined. Besides the disc height, matrix integrity, cell viability and phenotype expression, the tissue secretome can provide indications about potential interactions of the IVD with other cell types such as neurons. Finally, a novel multiaxial bioreactor setup capable of mimicking the six degrees-of-freedom loading environment of IVDs will be introduced that further advances the relevance of preclinical ex-vivo testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 42 - 42
2 Jan 2024
Stoddart M
Full Access

Articulating cartilage experiences a multitude of biophysical cues. Due to its primary function in distributing load with near frictionless articulation, it is clear that a major stimulus for cartilage homeostasis and regeneration is the mechanical load it experiences on a daily basis. While these effects are considered when performing in vivo studies, in vitro studies are still largely performed under static conditions. Therefore, an increasing complexity of in vitro culture models is required, with the ultimate aim to recreate the articulating joint as accurately as possible. We have for many years utilized a complex multiaxial load bioreactor capable of applying tightly regulated compression and shear loading protocols. Using this bioreactor, we have been able to demonstrate the mechanical induction of human bone marrow stromal cell (BMSC) chondrogenesis in the absence of exogenous growth factors. Building on previous bioreactor studies that demonstrated the mechanical activation of endogenous TGFβ, and subsequent chondrogenesis of human bone marrow derived MSCs, we have been further increasing the complexity of in vitro models. For example, the addition of high molecular weight hyaluronic acid, a component of synovial fluid, culture medium leads to reduced hypertrophy and increased glycosaminoglycan deposition. The ultimate aim of all of these endeavors is to identify promising materials and therapies during in vitro/ ex vivo studies, therefore reducing the numbers or candidates that are finally tested using in vivo studies. This 3R approach can improve the opportunities for success while leading to more ethically acceptable product development pathways


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 64 - 64
11 Apr 2023
Steijvers E Xia Z Deganello D
Full Access

Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity. HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product. It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule. Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 54 - 54
11 Apr 2023
Šećerović A Ristaniemi A Cui S Li Z Alini M Weder G Heub S Ledroit D Grad S
Full Access

A novel ex vivo intervertebral disc (IVD) organ model and corresponding sample holder were developed according to the requirements for six degrees of freedom loading and sterile culture in a new generation of multiaxial bioreactors. We tested if the model can be maintained in long-term IVD organ culture and validated the mechanical resistance of the IVD holder in compression, tension, torsion, and bending. An ex vivo bovine caudal IVD organ model was adapted by retaining 5-6 mm of vertebral bone to machine a central cross and a hole for nutrient access through the cartilaginous endplate. A counter cross was made on a customized, circular IVD holder. The new model was compared to a standard model with a minimum of bone for the cell viability and height changes after 3 weeks of cyclic compressive uniaxial loading (0.02-0.2 MPa, 0.2 Hz, 2h/ day; n= 3 for day 0, n= 2 for week 1, 2, and 3 endpoints). Mechanical tests were conducted on the assembly of IVD and holder enhanced with different combinations of side screws, top screws, and bone adhesive (n=3 for each test). The new model retained a high level of cell viability after three weeks of in vitro culture (outer annulus fibrosus 82%, inner annulus fibrosus 69%, nucleus pulposus 75%) and maintained the typical values of IVD height reduction after loading (≤ 10%). The holder-IVD interface reached the following highest average values in the tested configurations: 320.37 N in compression, 431.86 N in tension, 1.64 Nm in torsion, and 0.79 Nm in bending. The new IVD organ model can be maintained in long-term culture and when combined with the corresponding holder resists sufficient loads to study IVD degeneration and therapies in a new generation of multiaxial bioreactors


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 14 - 14
11 Apr 2023
Chen Z Chen P Tai A Bassonga E Mitchell C Wang A Zheng M
Full Access

Tendinopathy is the most frequent musculoskeletal disease that requires medical attention. Mechanical overload has been considered as a key driver of its pathology. However, the underline mechanism on how overload induces tendinopathy and inflammation is unclear. Extracellular mitochondria (EM) are newly identified as cell-to-cell communicators. The aim of this study is to elucidate the role of mitochondria in overload-induced inflammation. We performed three-dimensional uniaxial stretching to mouse tendon organoid in bioreactors. Cyclic strain of uniaxial loadings included underload, normal load, and overload, according to previous work. We then harvested microvesicles including EM, from the bioreactor by differential centrifugation and evaluated their characteristics by flow cytometry and super-resolution confocal microscopy. Raw 264.7 mouse macrophage cell line was used for chemotaxis assay in a Boyden Chamber System with Magnetic-Activated Cell Sorting Technology. EM induced cytokines secretion by macrophages was analyzed by a bead-based multiplex assay panel. N-Acetyl-L-cysteine (NAC) was used as the antioxidant to tendon organoid to regulate mitochondrial fitness. We showed mechanical load induced tendon organoid to release microvesicles including mitochondria. The size of microvesicles is mainly in the range from 220nm to 880nm. More than 75% of microvesicles could be stained by PKH26, confirming they were with lipophilic membrane. Super-resolution confocal microscopy identified two forms of mitochondria, including mitochondria encapsulated in vesicles and free mitochondria. Overload led to the degeneration of the organoid and induced microvesicles release containing most EM. Chemotaxis assay showed that EM from overloaded tendon organoid induced macrophages chemotaxis. In addition, microvesicles extracted from overloaded tendon organoid induced the production of proinflammatory cytokines including IL-6, KC (Keratinocyte-Derived Chemokine) and IL-18. NAC treatment to tendon cells could attenuate overload-induced macrophage chemotaxis. Overload induces EM releasing from tendon cells, which leads to chemotaxis of macrophages toward tendon, resulting in induction of inflammation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 53 - 53
1 Nov 2018
Stoddart MJ
Full Access

The unique properties of mesenchymal stem cells (MSCs) and their natural presence within the bone marrow make them an attractive source of cells for novel cartilage repair strategies. As mechanics play a critical role in vivo, a more physiological loading regime in vitro would be more appropriate to test novel therapies, and this can be achieved using bioreactors. Using a multiaxial load bioreactor system, we have investigated the effect of mechanical stimulation on human stem cell differentiation in the absence of growth factors, specifically transforming growth factor β (TGFβ). Our bioreactor system allows for the application of shear, compression or a combination of both stimuli to establish the phenotypic changes induced within MSCs. Neither compression alone, nor shear alone induces a change in MSC phenotype with a fibrin-based scaffold. However, we have demonstrated that a combination of compression and shear is able to induce chondrogenic differentiation and this is due to increased endogenous expression and activation of TGFβ. Using this multiaxial load bioreactor system, we can search for novel markers and potential therapeutic targets that only occur under physiological loads. In addition, potential rehabilitation protocols to be used after cell therapy in cartilage repair can also be investigated


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 55 - 55
1 Nov 2018
Moeller K Gottardi R Tellado SF Tuan R van Griensven M Balmayor ER
Full Access

After surgical tendon repair, the tendon-to-bone enthesis often doesn't regenerate, which leads to high numbers of rupture recurrences. To remedy this, tissue engineering techniques are being pursued to strengthen the interface and improve regeneration. In this study, we used biphasic 3D printed PLGA scaffolds with aligned pores at the tendon side and random pores at the bone side to mimic the native enthesis. We seeded these with mesenchymal stem cells and inserted them into dual-flow bioreactors, allowing us to employ tenogenic and chondrogenic differentiation medium in separate flows. MTS assay demonstrated metabolism in dual-flow bioreactors at levels similar to tissue culture plate and rotating bioreactors. After 7, 14 and 21 days, samples were collected and analyzed by histology, RT-PCR and GAG production. H&E staining confirmed a compact cell layer attached to fibers and between porous cavities of scaffolds that increased with time of culture. Interestingly, cultured constructs in dual-flow bioreactors biased towards a chondrogenic fate regardless of which flow they were exposed to, possibly due to high porosity of the scaffold allowing for fluid mixture. Sox9 was upregulated at all timepoints (up to 30× compared to control), and by day 21 Col2A1 was also highly upregulated. Additionally, GAG production in treated constructs (serum-free) was able to match constructs exposed to 10% FBS in controls, demonstrating the functional matrix forming capabilities of this system. Overall, we have validated this dual-flow system as a potential platform to form the enthesis, and future studies will further optimize parameters to achieve distinctly biphasic constructs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 119 - 119
2 Jan 2024
Tryfonidou M
Full Access

Tryfonidou leads the Horizon 2020 consortium (iPSpine; 2019–2023) bringing a transdisciplinary team of 21 partners together to address the challenges and bottlenecks of iPS-based advanced therapies towards their transition to the clinic. Here, chronic back pain due to intervertebral disc degeneration is employed as a show case. The project develops the iPS-technology and designed smart biomaterials to carry, protect and instruct the iPS cells within the degenerate disc environment. This work will be presented including ongoing activities focus on translating the developed methodology and tools towards clinically relevant animal models. The consortium optimized the protocol for the differentiated iPS-notochordal-like cells (iPS-NLCs) and shortlisted two biomaterials shortlisted based on their physicochemical, cytotoxicity, biomechanical and biocompatibility testing. Both were shown to be safe and have been tested with the progenitors of iPS-NLCs. An advanced platform (e.g., the dynamic loading bioreactor for disc tissue) was used to evaluate their performance: the biomaterials supported the iPS-NLC progenitors after injection into the degenerate disc and seem to also support their maturation towards NLCs. Furthermore, we confirmed the capacity of these cells to survive inside degenerated discs at 30 days upon injection in sheep, whereafter we continued with their evaluation at 3 months post-injection. We achieved full evaluation of the sheep spines, including biomechanical analysis using the portable spine biomechanics tester prior analysis at the macro- and microscopic, and biochemical level


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 71 - 71
1 Jul 2014
de Peppo G Marcos-Campos I Kahler D Alsalman D Shang L Vunjak-Novakovic G Marolt D
Full Access

Summary Statement. A biomimetic tissue engineering strategy involving culture on bone scaffolds in perfusion bioreactors allows the construction of stable, viable, patient-specific bone-like substitutes from human induced pluripotent stem cells. Introduction. Tissue engineering of viable bone substitutes represents a promising therapeutic strategy to mitigate the burden of bone deficiencies. Human induced pluripotent stem cells (hiPSCs) have an excellent proliferation and differentiation capacity, and represent an unprecedented resource for engineering of autologous tissue grafts, as well as advanced tissue models for biological studies and drug discovery. A major challenge is to reproducibly expand, differentiate and organize hiPSCs into mature, stable tissue structures. Based on previous studies (1,2,3), we hypothesised that the culture conditions supporting bone tissue formation from adult human mesenchymal stem cells (hMSCs) and human embryonic stem cell (hESC)-derived mesenchymal progenitors could be translated to hiPSC-derived mesenchymal progenitors. Our objectives were to: 1. Derive and characterise mesenchymal progenitors from hiPSC lines. 2. Engineer bone substitutes from progenitor lines exhibiting osteogenic potential in an osteoconductive scaffold – perfusion bioreactor culture model. 3. Assess the molecular changes associated with the culture of hiPSC-progenitors in perfusion bioreactors, and evaluate the stability of engineered bone tissue substitutes in vivo. Methods. hESC and hiPSC lines (derived using retroviral vectors, Sendai virus and episomal vectors) were karyotyped, characterised for pluripotency and induced into the mesenchymal lineage. Mesenchymal progenitors were evaluated for growth potential, expression of surface markers and differentiation potential. Progenitors exhibiting osteogenic potential were cultured on decellularised bovine bone scaffolds in perfusion bioreactors for 5 weeks as previously (3). Global gene expression profiles were evaluated prior and after bioreactor culture. Bone development was investigated using biochemical and histological methods, and by micro-computed tomography (μCT) imaging over the duration of bioreactor culture and after 12-week subcutaneous implantation in immunodeficient mice. Results. Progenitors with high proliferation potential, expressing typical mesenchymal surface antigens were successfully derived from three hiPSC lines. Differences in mesenchymal surface antigens expression and global gene expression profiles of progenitors from different lines corresponded to their differentiation abilities toward the osteogenic, chondrogenic and adipogenic lineages. Bioreactor culture yielded constructs with significantly higher cellularity, AP activity and osteopontin release into the culture medium as compared to static culture. Dense bone matrix formation was evidenced by the positive staining of collagen, osteopontin, bone sialoprotein and osteocalcin. In comparison, static culture yielded constructs with uniformly distributed cells, however tissue formation was scarce. μCT revealed a significant increase in bone structural parameters, evidencing mineralization of the deposited bone tissue during the 5-week culture in bioreactors. Osteogenesis and bone tissue formation were comparable between hESCs, hiPSCs and hMSCs (3). Bioreactor cultivation resulted in repression of genes involved in proliferation and tumorigenesis, and upregulation of genes associated with osteogenesis and bone development. Engineered bone tissue displayed stable phenotype after 12-week implantation in vivo, with cells of human origin, ingrowing vasculature and osteoclasts, suggesting an initiation of tissue remodeling. Discussion/Conclusion. Our biomimetic strategy opens the possibility to construct an unlimited quantity of patient-specific bone grafts for personalised applications, and to generate qualified experimental models to study bone biology under normal and pathological conditions, as well as test new drugs using selected pools of hiPSC lines


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 11 - 11
2 Jan 2024
Ciardulli M Giudice V Oliva F Selleri C Maffulli N Della Porta G
Full Access

Poor tendon repair is an unsolved issue in clinical practice, due to complex tendon structure. Tendon stem/progenitor cells (TSPCs) play key roles in homeostasis, regeneration, and inflammation regulation in acute tendon injuries, and rely on TGF-β signaling for recruitment into degenerative tendons. In this study, we aimed to develop an in vitro model for tenogenesis adopting a dynamic culture of a fibrin 3D scaffold, bioengineered with human TSPCs collected from both healthy and tendinopathic surgery explants (Review Board prot./SCCE n.151, 29 October 2020). 3D culture was maintained for 21 days under perfusion provided by a custom-made bioreactor, in a medium supplemented with hTGF-β1 at 20 ng/mL. The data collected suggested that the 3D in vitro model well supported survival of both pathological and healthy cells, and that hTGF-β signaling, coupled to a dynamic environment, promoted differentiation events. However, pathological hTSPCs showed a different expression pattern of tendon-related genes throughout the culture and an impaired balance of pro-inflammatory and anti-inflammatory cytokines, compared to healthy hTSPCs, as indicated by qRT-PCT and immunofluorescence analyses. Additionally, the expression of both tenogenic and cytokine genes in hTSPCs was influenced by hTGF-β1, indicating that the environment assembled was suitable for studying tendon stem cells differentiation. The study offers insights into the use of 3D cultures of hTSPCs as an in vitro model for investigating their behavior during tenogenic events and opens perspectives for following the potential impact on resident stem cells during regeneration and healing events


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 125 - 125
2 Jan 2024
Scala P Giudice V Selleri C Maffulli N Rehak L Porta G
Full Access

Spontaneous muscle regenerative potential is limited, as severe injuries incompletely recover and result in chronic inflammation. Current therapies are restricted to conservative management, not providing a complete restitutio ad integrum; therefore, alternative therapeutic strategies are welcome, such as cell-based therapies with stem cells or Peripheral Blood Mononuclear Cells (PBMCs). Here, we described two different in vitro myogenic models: a 2D perfused system and a 3D bioengineered scaffold within a perfusion bioreactor. Both models were assembled with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and human primary skeletal myoblasts (hSkMs) to study induction and maintenance of myogenic phenotype in presence of PBMCs. When hBM-MSCs were cultured with human primary skeletal myoblasts (hSkMs) in medium supplemented with 10 ng/mL of bFGF; cells showed increased expression of myogenic-related gene, such as Desmin and Myosin Heavy Chain II (MYH2) after 21 days, and a prevalent expression of anti-inflammatory cytokines (IL10, 15-fold). Next, PBMCs were added in an upper transwell chamber and hBM-MSCs significantly upregulated myogenic genes throughout the culture period, while pro-inflammatory cytokines (e.g., IL12A) were downregulated. In 3D, hBM-MSCs plus hSkMs embedded in fibrin-based scaffolds, cultured in dynamic conditions, showed that all myogenic-related genes tended to be upregulated in the presence of PBMCs, and Desmin and MYH2 were also detected at protein level, while pro-inflammatory cytokine genes were significantly downregulated in the presence of PBMCs. In conclusion, our works suggest that hBM-MSCs have a versatile myogenic potential, enhanced and modulated by PMBCs. Moreover, our 3D biomimetic approach seemed to better resemble the tissue architecture allowing an efficient in vitro cellular cross-talk