Aims. We quantitatively compared the 3D
Introduction. The increased prevalence of osteoporosis in the patient population undergoing reverse shoulder arthroplasty (RSA) results in significantly increased complication rates. Mainly demographic and clinical predictors are currently taken into the preoperative assessment for risk stratification without quantification of preoperative computed tomography (CT) data (e.g. bone density). It was hypothesized that preoperative CT
Abstract. Introduction. After remodelling, loss of
In shoulder arthroplasty, humeral resurfacing or short stem devices rely on the proximal humeral bone for fixation and load transfer. For resurfacing designs, the fixation takes place above the anatomical neck, whilst for short stem designs the resection is made at the anatomical neck and fixation is achieved in the bone distal to that resection. The aim of the study is to investigate the
The purpose of this study is to quantify the distribution of
Background. Some models of knee osteoarthritis (OA) suggest that the properties of knee tissues are adapted in healthy joints, and that OA development is due to a breakdown in the equilibrium among tissue properties. Cartilage thickness and
Few studies suggest that the use of a cemented stem reduces proximal stresses and may result in proximal bone resorption. Aim of our study: Does bone cement affect peri prosthetic
Introduction: The Resurfacing Hip has been increasingly popular for younger patients. Femoral neck fractures are still the main complication. The problems associated with cement such as thermal necrosis, cement debris and lack of long-term biological fixation, combined with the general use of cementless fixation in young patients invite the question whether a cementless component can be used for resurfacing hip replacement. Given that the cement may reinforce the femoral head preventing collapse, an additional question regarding the effect of
Tibial bone density may affect implant stability and functional outcomes following total knee replacement (TKR). Our aim was to characterise the
Background. Defining optimal coronal alignment in Total Knee Replacement (TKR) is a controversial and poorly understood subject. Tibial bone density may affect implant stability and functional outcomes following TKR. Our aim was to compare the
Peri-prosthetic bone loss caused by stress shielding may be associated with aseptic loosening of femoral components. In order to increase primary stability and to reduce stress shielding, a three-dimensional, cementless individual femoral (Evolution K) component was manufactured using pre-operative CT scans. Using dual energy x-ray absorptiometry, peri-prosthetic
Introduction. Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT. Methods. Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the
Introduction. The success of cementless total hip arthroplasty (THA) depends on the primary stability of the components. One of the biomechanical factors that comes into play is the mechanical quality of the bone. To our knowledge, there are no reported studies in the literature analyzing the impact of the preoperative
As an alternative to total hip arthroplasty (THA), hip resurfacing arthroplasty (HRA) provides the advantage of retaining bone stock. However, femoral component loosening and femoral neck fracture continue to be leading causes of revision in HRA. Surgical technique including cementation method and bone preparation, and patient selection are known to be important for fixation. This study was designed to understand if and to what extent compromise in bone quality and the presence of cysts in the proximal femur contribute to resurfacing component loosening. A finite element (FE) model of a proximal femur was used to calculate the stress in the cement layer.
Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic. Surgical reconstruction is performed to attempt to restore the function of the knee and theoretically restore this
Introduction. Tunnelwidening in failed anterior cruciate ligament reconstruction (ACLR) can result in the staged revision procedures with a need for bone transplantation prior to revision reconstruction. Limited knowledge exist regarding to quality of different transplantation methods. The present study used CT-scanning to evaluate tunnel
Osteoarthritic (OA) changes to the bone morphology of the proximal tibia may exhibit load transfer patterns during total knee arthroplasty not predicted in models based on normal tibias. Prior work highlighted increased
Femoroacetabular impingement (FAI) results from a morphological deformity of the hip and is associated with osteoarthritis (OA). Increased
We studied the
Introduction and purpose: The failure of a TKP is often due to deficiencies related to alignment, stability or fixation. The purpose of this paper is to determine how loads are distributed when each of two tibial stem models are implanted and to assess those loads densitometrically. Materials and methods: We analyzed 20 patients with a cemented TKR and divided them into two groups according to whether their tibial stem was cylindrical or cruciform. We studied the evolution of periprosthetic