Aims. The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model. Materials and Methods. A canine transcortical model was used to evaluate the characteristics of
Introduction. Long term data on the survivorship of cemented total knee arthroplasty (TKA) has demonstrated excellent outcomes; however, with younger, more active patients, surgeons have a renewed interest in improved biologic fixation obtained from highly porous, cementless implants. Early designs of cementless total knees systems were fraught with high rates of failure for aseptic loosening, particularly on the tibial component. Prior studies have assessed the
Introduction. Cementless acetabular components are commonly used in primary and revision total hip arthroplasty, and most designs have been successful despite differences in the porous coating structure. Components with 2D titanium fiber mesh coating (FM) have demonstrated high survivorships up to 97% at 20 years. 1. 3D tantalum porous coatings (TPC) have been introduced in an attempt to improve osseointegration and therefore implant fixation. Animal models showed good results with this new material one year after implantation. 2. , and clinical and radiographic studies have demonstrated satisfactory outcomes. 3. However, few retrieval studies exist evaluating in vivo
Introduction. Uncemented porous coated acetabular components have gained more research emphasis in recent years compared to their cemented counterparts, largely owing to the natural biological fixation they offer. Nevertheless, sufficient peri-prosthetic
Background. Polymethylmethacrylate (PMMA) has been used for total knee arthroplasty (TKA) as a method of fixation; however, its durability has been questionable for the long-term use because of the loosening after the cement deterioration, its vulnerability toward infectious resistance, and a smaller amount of healthy bone left for the knee revision surgery. Especially, a decrease of bone density on the proximal tibia has been believed to be triggered as a result of stress shielding. When compared with a cemented TKA, a cementless TKA reduces the amount of bone loss after surgery. In 1999, the Trabecular Metal (TM), with its main composition being the porous tantalum metal, became available as a choice of the porous cementless knee joint prosthesis. The characteristics of porous tantalum metal are its great affinity to the bone as well as its similarity to cancellous bone. The porous tantalum metal starts to bond with osteoblasts, and fills up 80% of porous structure in one year; therefore, it has been characterized by its higher initial fixation strength. However, it is questionable if strong fixation strength due to
INTRODUCTION. Electron beam melting is a promising technique to produce surface structures for cementless implants. Biomimetic apatite coatings can be used to enhance
Introduction. A variety of porous coatings and substrates have been used to obtain fixation at the bone-implant interface. Clinical studies of porous tantalum, have shown radiographically well-fixed implants with limited cases of loosening. However, there has been limited retrieval analysis of porous tantalum hip implants. The purpose of this study was to investigate factors affecting
Total hip replacement using porous-coated cobalt-chrome femoral implants designed for biological fixation has been evaluated in 307 patients after two years and in 89 patients after five years. Histological study of 11 retrieved specimens showed
We have studied the characteristics of
We implanted bone harvest chambers (BHCs) bilaterally in ten mature male New Zealand white rabbits. Polyethylene particles (0.3 ± 0.1 −m in diameter, 6.4×10. 12. particles/ml) were implanted for two, four or six weeks bilaterally in the BHCs, with subsequent removal of the ingrown tissue after each treatment. In addition to the particles, one side also received 1.5 −g of recombinant transforming growth factor ß1 (TGFβ1). At two weeks, the bone area as a percentage of total area was less in chambers containing TGFβ compared with those with particles alone (7.8 ± 1.3% v 16.9 ± 2.7% respectively; 95% confidence interval (CI) for difference -14.0 to -4.30; p = 0.002). At four weeks, the percentage area of bone was greater in chambers containing TGFβ compared with those with particles alone (31.2 ± 3.4% v 22.5 ± 2.0% respectively; 95% CI for difference 1.0 to 16.4; p = 0.03). There were no statistical differences at six weeks, despite a higher mean value with TGFβ treatment (38.2 ± 3.9% v 28.8 ± 3.5%; 95% CI for difference -4.6 to 23.3; p = 0.16). The number of vitronectin-receptor-positive cells (osteoclast-like cells) was greater in the treatment group with TGFβ compared with that with particles alone; most of these positive cells were located in the interstitium, rather than adjacent to bone. TGFβ1 is a pleotropic growth factor which can modulate cellular events in the musculoskeletal system in a time- and concentration-dependent manner. Our data suggest that there is an early window at between two and six weeks, in which TGFβ may favourably affect
Introduction. Surgeons are often confronted with large amounts of bone loss during the revision of total hip prostheses. Regularly, porous metals are applied to reconstruct the missing bone. Rapid and extensive bone infiltration into the implant's pores is essential to obtain strong and durable biological fixation. Today, specialised layered manufacturing techniques provide the flexibility to produce custom-made metallic implants with a personalized external shape and a well-controlled internal network of interconnected pores. In this study,
In this study,
The effect of cup geometry in uncemented Total Hip Arthroplasty has not been investigated. We reviewed the radiological and clinical results of 527 primary total hip arthroplasties. We assessed the
Aims: Bioactive glasses are a family of silica-based synthetic biomaterials, which form chemical bonding with the surrounding bone. The limiting biologic factors of the bonding process are poorly understood. The hypothesis of the current study was that there are species-specific differences in the incorporation of bioactive glasses due to anatomic and physiologic factors. Methods: Conical porous implants made of sintered bioactive glass or titanium microspheres (Ø 250–300 μm) were surgically implanted bilaterally into the cortex of tibias or femurs in sheep, dog and rabbit. Implant incorporation was evaluated by means of push-out testing, pQCT, his-tomorphometry, BEI-SEM, and EDXA. The comparison was made at 12 weeks. A total of 176 implants were analysed. Results: Between the three species, there were significant differences in the extent of new
Aims: Early
Background. Recent advances in materials and manufacturing processes for arthroplasty have allowed fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies is hindered by the cost and complications of animal studies, particularly during early iterations in development process. To address this problem, we have constructed and validated an ex-vivo bone bioreactor culture system to enable empirical testing of candidate structures and materials. In this study, we investigated mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system. Methods. Cancellous cylindrical bone cores were harvested from bovine metatarsals and divided into five groups under different conditions. After incubation for 4 & 7 weeks, the viability of each bone sample was evaluated using Live-Dead assay and microscopic anatomy of cells were determined using histology stain H&E. Matrix deposits on the scaffolds were examined with scanning electron microscopy (SEM) while its chemical composition was measured using energy-dispersive x–ray spectroscopy (EDX). Results. The viability of bone cores was maintained after seven weeks using our protocol and ex vivo system. From SEM images, we found more organic matrix deposition along with crystallite like structures on the metal samples pulled from the bioreactor indicating the initial stages of mineralization. EDX results further confirmed the presence of carbon and calcium phosphates in the matrix. Conclusion. A bone bioreactor can be used a tool alternate to in-vivo for
Synthetic bone grafts are used in several major dental and orthopaedic procedures. Strontium, in the form of strontium ranelate, has been shown to reduce fracture risk when used to treat osteoporosis. The aim of the study was to compare bone repair in femoral condyle defects filled with either a 10% strontium substituted bioactive glass (StronBoneTM) or a TCP-CaSO4 graft. We hypothesise that strontium substituted bioactive glass increases the rate of
Biomaterial porosity is considered one of most important proprieties required to obtain fixation of
Uncemented hip implants commonly have porous coated surfaces that enhance the mechanical interlock with bone, encourage
Aims. Limb salvage surgery (LSS) is the primary treatment option for primary bone malignancy. It involves the removal of bone and tissue, followed by reconstruction with endoprosthetic replacements (EPRs) to prevent amputation. Trabecular metal (TM) collars have been developed to encourage