Objectives. The aim of this systematic literature review was to assess the clinical level of evidence of commercially available demineralised
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating
Despite the increasing availability of bone grafting materials, the regeneration of large bone defects remains a challenge. Especially infection prevention while fostering regeneration is a crucial issue. Therefore, loading of grafting material with antibiotics for direct delivery to the site of need is desired. This study evaluates the concept of local delivery using in vitro and in vivo investigations. We aim at verifying safety and reliability of a perioperative enrichment procedure of demineralized
Summary Statement. Demineralised
Extraskeletal bone formation can be induced in rodents by implantation of demineralised
Autologous bone graft has been used in the treatment of complex bone defects for more than a century. Morbidity associated with the harvest of this bone graft has led orthopaedic surgeons to seek alternative therapies in the treatment of long bone non-unions. The aim of this study was to determine whether the use of demineralised
Background. Re-attachment of tendon to bone is challenging with surgical repair failing in up to 90% of cases. Poor biological healing is common and characterised by the formation of weak scar tissue. Previous work has demonstrated that decellularised allogenic demineralised
Demineralized
1. The appearance of decalcified
We used demineralised
Introduction: The aim of this study was to develop a technique to decellularise a porcine cartilagebone construct with a view to using this as a biological scaffold for transplantation into human osteochondral defect as a cartilage substitute. Methods: Decellularisation was based on a modification of the technique of Booth et al (2002). Cartilage
Demineralized
We report our 4 years’ experience using of demineralized human
Despite the widespread use of demineralized
The purpose of this study was to understand the effects of terminal sterilisation and residual calcium on human demineralised
Introduction. Osteochondral defects (OCDs) of the talus are treated initially by arthroscopic bone marrow stimulation. For both large and secondary defects, current alternative treatment methods have disadvantages such as donor site morbidity or two-stage surgery. Demineralized
Aims: The evaluation of the results becoming from the use of demineralized
Aims: The evaluation of the results becoming from the use of demineralized
Introduction. Tendon injuries remain challenging, secondary healing and prolonged immobilisation result in suboptimal outcome. Previous study by our group showed that demineralised
Introduction. Demineralised